Example 1.2: Fever in early pregnancy and risk of fetal death

- The Danish National Birth Cohort Study recruited pregnant women 1997-2002 for telephone interviews scheduled to take place in gestational weeks 12-16.
- Here: data on women recruited before 31 March 1999, interviewed before week 17, and who were still pregnant at week 17.
- Study relation between risk of fetal death (or risk of “small for gestational age”, SGA) and explanatory variables
- Outcome variables (fetal death and SGA): binary,
- Both categorical and quantitative explanatory variables relevant.

Models for binary data

So far, the risk of a failure, \(p_i = \text{pr}(y_i = 1 \mid x_i) \) for given covariates, \(x_i \) has been described using the logit link:

\[
\text{logit}(p_i) = \log \left(\frac{p_i}{1 - p_i} \right) = a + bx_i.
\]

This provided \(b \)-estimates which are \(\log(\text{odds ratios}) \) and predicted probabilities

\[
p_i = \frac{\exp(a + bx_i)}{1 + \exp(a + bx_i)},
\]

which stayed nicely between 0 and 1.

Figure 1: Left: the logit function \(\ell = \text{logit}(p) = \log(p/(1 - p)) \). Right: the logistic function \(p = \exp(\ell)/(1 + \exp(\ell)) \).
Other link functions

Logistic regression

\[\text{logit}(p_i) = LP_i \]

is by far the most common regression model for binary data. However, other link functions are sometimes used:

\[
\begin{align*}
\text{probit}(p_i) & = LP_i, \\
\log(p_i) & = LP_i, \\
p_i & = LP_i.
\end{align*}
\]

Here, \(LP_i\) is the linear predictor and \(\text{probit}(p)\) the \(p\)th percentile in the standard Normal distribution (e.g. \(z_{0.975} = 1.96\) if \(p = 0.975\)).

Comments to link functions

The logit and probit models can be thought of as arising from a “latent” variable, \(y_i^*\), “i’s health”, such that \(y_i = 1\) whenever \(y_i^*\) is below some threshold, \(c\): \((y_i = 1) \iff (y_i^* \leq c)\).

For the probit model the distribution of the latent variable is standard Normal, for the logit model it follows a standard “logistic” distribution (these two distributions have quite similar shapes).

The probit model also has the nice property that \(0 < p_i < 1\).

The log and identity links do not have this property.

Then why use them?

Because estimates have simple interpretations as log(relative risks) or risk differences.

Data

Table 1: Fever in pregnancy study: distribution of fetal death by smoking and by number of fever episodes in early pregnancy.

<table>
<thead>
<tr>
<th>Category</th>
<th>Women</th>
<th>Fetal Deaths</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No smokers</td>
<td>8647</td>
<td>81</td>
<td>0.94</td>
</tr>
<tr>
<td>1–10 cigarettes/day</td>
<td>1760</td>
<td>19</td>
<td>1.08</td>
</tr>
<tr>
<td>11+ cigarettes/day</td>
<td>1371</td>
<td>19</td>
<td>1.39</td>
</tr>
<tr>
<td>No fever episodes</td>
<td>9693</td>
<td>98</td>
<td>1.01</td>
</tr>
<tr>
<td>1 fever episode</td>
<td>1872</td>
<td>20</td>
<td>1.07</td>
</tr>
<tr>
<td>2 fever episodes</td>
<td>183</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>3+ fever episodes</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>11778</td>
<td>119</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Results from simple models with 1 covariate

Table 2: Fever in pregnancy study: effects on fetal death of smoking and number of fever episodes in early pregnancy estimated using different link functions.

<table>
<thead>
<tr>
<th>Link Function</th>
<th>Logit</th>
<th>Probit</th>
<th>Log</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cigs/day</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
</tr>
<tr>
<td>1–10 cigs/day</td>
<td>0.143 (0.256)</td>
<td>0.053 (0.096)</td>
<td>0.142 (0.254)</td>
<td>0.014 (0.003)</td>
</tr>
<tr>
<td>11+ cigs/day</td>
<td>0.396 (0.257)</td>
<td>0.150 (0.098)</td>
<td>0.392 (0.253)</td>
<td>0.0045 (0.003)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-4.66 (0.11)</td>
<td>-2.35 (0.041)</td>
<td>-4.67 (0.11)</td>
<td>0.0094 (0.0010)</td>
</tr>
<tr>
<td>0 episodes</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
<td>0 (ref)</td>
</tr>
<tr>
<td>1 episode</td>
<td>0.056 (0.247)</td>
<td>0.0208 (0.092)</td>
<td>0.055 (0.244)</td>
<td>0.0006 (0.0026)</td>
</tr>
<tr>
<td>2 episodes</td>
<td>-0.620 (1.01)</td>
<td>-0.223 (0.350)</td>
<td>-0.615 (1.00)</td>
<td>-0.0046 (0.0056)</td>
</tr>
<tr>
<td>3+ episodes</td>
<td>-19.78 (35670)</td>
<td>-4.17 (4256)</td>
<td>-19.69 (34198)</td>
<td>-0.0101 (0.0010)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-4.58 (0.10)</td>
<td>-2.32 (0.038)</td>
<td>-4.59 (0.10)</td>
<td>0.010 (0.0010)</td>
</tr>
</tbody>
</table>
Interpreting estimates for smoking

Logit link:
\[
\log\left(\frac{0.0108}{1-0.0108}\right) = 0.143, \quad \log\left(\frac{0.0094}{1-0.0094}\right) = 0.396,
\]

intercept logit(0.0094)=−4.66; log link:
\[
\log\left(\frac{0.0108}{0.0094}\right) = 0.142, \quad \log\left(\frac{0.0139}{0.0094}\right) = 0.392.
\]

Intercept log(0.0094)=−4.67. Identity link:
\[
0.0108 - 0.0094 = 0.0014, \quad 0.0139 - 0.0094 = 0.0045
\]

and the intercept is 0.0094.

Parameters for log and logit are close - Figure!

Interpreting estimates (ctd.)

Probit link: If the latent variable \(y^*_i \) for woman \(i \) (her “health”) is smaller than some threshold \(c \) then woman \(i \) experiences a fetal loss.

In the reference group (no smokers), \(y^*_i \) has a standard Normal distribution (mean 0).

In other smoking categories, “mean health”, that is, the mean value of \(y^*_i \) is reduced by 0.053 and 0.150, respectively.

Intercept −2.35: the 0.94 percentile in the standard Normal distribution corresponding to the relative frequency of fetal deaths in the reference group.

Estimates for fever episodes have a similar interpretation. Note the “strange” results for 3+ versus 0 (except for the model with identity link) due to 0 fetal deaths in the 3+ category.

One quantitative covariate

Study models including mother’s age in years (mean 29.6, SD=4.2, minimum=16):

Table 3: Fever in pregnancy study: effects on fetal death of mother’s age estimated using different link functions.

<table>
<thead>
<tr>
<th>Link Function</th>
<th>Logit</th>
<th>Probit</th>
<th>Log</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>−4.967</td>
<td>−2.462</td>
<td>−4.974</td>
<td>0.0074</td>
</tr>
<tr>
<td>Age-25 (per 10 years)</td>
<td>0.726</td>
<td>0.269</td>
<td>0.718</td>
<td>0.0059</td>
</tr>
<tr>
<td>(SD)</td>
<td>(0.216)</td>
<td>(0.081)</td>
<td>(0.213)</td>
<td>(0.0018)</td>
</tr>
</tbody>
</table>

Mother’s age significant for all models.
Interpretation

Results for logit and log links are almost identical: Odds (risk) increases by \(\exp(0.72) \approx 2 \) for every 10 years increase of age.

Probit model: Latent “health” decreases by 0.269 for every 10 years of age.

Identity link: risk increases by 0.0059 for every 10 years of age.

Note that (since intercept=0.0074 corresponding to age 25 years) the predicted risk

\[
0.0074 + 0.0059(\text{age} - 25)/10
\]

is negative for ages below 13 - not a great problem since minimum age in the data set was 16.

Small for gestational age, SGA

SGA means birth weight below some percentile for the actual gestational week, here the 5th percentile.

Table 4: Fever in pregnancy study: Distribution of small for gestational age (SGA) by parity and smoking.

<table>
<thead>
<tr>
<th>Cigarettes/Day</th>
<th>0</th>
<th>1–10</th>
<th>11+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction</td>
<td>%</td>
<td>Fraction</td>
<td>%</td>
</tr>
<tr>
<td>Parity 0</td>
<td>223/3635</td>
<td>6.1</td>
<td>77/855</td>
<td>9.0</td>
</tr>
<tr>
<td>Parity 1+</td>
<td>115/4637</td>
<td>0.25</td>
<td>42/830</td>
<td>5.1</td>
</tr>
<tr>
<td>Total</td>
<td>338/8272</td>
<td>4.1</td>
<td>119/1685</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Results

Table 5: Fever in pregnancy study: effects on small for gestational age of parity and smoking estimated using different link functions.

<table>
<thead>
<tr>
<th>Link Function</th>
<th>Logit</th>
<th>Probit</th>
<th>Log</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity 1+ vs. 0</td>
<td>-0.730 (0.089)</td>
<td>-0.344 (0.041)</td>
<td>-0.683 (0.084)</td>
<td>-0.0357 (0.0041)</td>
</tr>
<tr>
<td>Smoking 1–10 vs. 0</td>
<td>0.434 (0.111)</td>
<td>0.253 (0.053)</td>
<td>0.499 (0.103)</td>
<td>0.0271 (0.064)</td>
</tr>
<tr>
<td>Smoking 11+ vs. 0</td>
<td>0.836 (0.112)</td>
<td>0.407 (0.055)</td>
<td>0.768 (0.103)</td>
<td>0.0499 (0.0080)</td>
</tr>
<tr>
<td>LR test for no interaction</td>
<td>10.58</td>
<td>8.1</td>
<td>11.7</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Interpretation

Risk of SGA depends significantly on parity and smoking for all four models (in the expected directions).

Note that presence of interaction is scale-dependent - only for the identity link do we see no significant interaction.
How to choose the link function?

Not obvious, but aspects like

• ease of interpretation,
• model fit,
• model simplicity

should be considered.

For case-control studies, there is no choice - only logit link works!

Case-control studies

For rare disease outcomes, a prospective study may be costly. Alternative: retrospective sampling of cases among those with \(y_i = 1 \) and controls among those with \(y_i = 0 \). Ascertain exposure subsequently.

Table 6: The basic two-by-two table for a case-control study with a single binary exposure, \(x \).

<table>
<thead>
<tr>
<th>Group</th>
<th>Controls ((y = 0))</th>
<th>Cases ((y = 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexposed (x = 0)</td>
<td>(c_0)</td>
<td>(d_0)</td>
</tr>
<tr>
<td>Exposed (x = 1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
</tr>
</tbody>
</table>

A subject with \(y_i = 1 \) is sampled as a case with probability \(q_d \) independent of exposure, and a subject with \(y_i = 0 \) is sampled as a control with probability \(q_c \) independent of exposure.

Case-control studies: estimating odds ratio

As before: \(p_0 = \text{pr}(y_i = 1 \mid x_i = 0) \) and \(p_1 = \text{pr}(y_i = 1 \mid x_i = 1) \), leading to the odds ratio

\[
OR = \frac{\frac{p_1}{1-p_1}}{\frac{p_0}{1-p_0}}.
\]

The case-control ratio among exposed \(\frac{d_1}{c_1} \) estimates

\[
\frac{p_1 q_d}{(1-p_1)q_c} \]

and that among the unexposed \(\frac{d_0}{c_0} \) estimates

\[
\frac{p_0 q_d}{(1-p_0)q_c},
\]

that is, the ratio between these \(\frac{d_1/c_1}{d_0/c_0} \) estimates

\[
\frac{\frac{p_1 q_d}{(1-p_1)q_c}}{\frac{p_0 q_d}{(1-p_0)q_c}} = OR.
\]
Case-control studies: logistic regression

Let

\[b = \log(OR) = \log \left(\frac{p_1/(1-p_1)}{p_0/(1-p_0)} \right) \]

be the log(odds ratio) and \(a = \log \frac{p_0}{1-p_0} \) the log(odds) among non-exposed.

If the logistic regression model for the underlying population is

\[\ell_i = \logit(p_i) = a + bx_i \]

then the resulting model for the sampled case-control data is:

\[\tilde{\ell}_i = \tilde{a} + bx_i \]

with \(\tilde{a} = a + \log \frac{q_c}{q_d} \).

That is, from the case-control data we can estimate the slope, \(b \), but not the intercept, \(a \) provided that sampling probabilities for both cases and controls do not depend on exposure.

Similarly for multiple logistic regression:

\[\ell_i = a + b_1 x_{i,1} + \cdots + b_n x_{i,n} \]

where the \(b \)'s but not \(a \) can be estimated if sampling probabilities for both cases and controls do not depend on any of the covariates \(x_1, \ldots, x_n \).

Warning: matched case-control studies. If controls are age-matched to controls then sampling probabilities for controls do depend on age, and age effects cannot be estimated.

Example: SGA and parity, smoking

All SGA cases (574) and (approximately) three non-SGA controls per case (1562 controls) were sampled:

Table 7: Fever in pregnancy study: distribution of sga cases and controls by parity and smoking: cases/controls.

<table>
<thead>
<tr>
<th>No Smokers</th>
<th>1–10 Cigarettes/Day</th>
<th>11+ Cigarettes/Day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity 0</td>
<td>223/498</td>
<td>77/113</td>
<td>58/86</td>
</tr>
<tr>
<td>Parity 1+</td>
<td>115/668</td>
<td>42/114</td>
<td>59/83</td>
</tr>
<tr>
<td>Total</td>
<td>338/1166</td>
<td>119/227</td>
<td>117/169</td>
</tr>
</tbody>
</table>

Results

Table 8: Fever in pregnancy study: logistic regression models for case-control sample and for the entire dataset.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Case-Control Sample</th>
<th>Full Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity 0 vs 1+, No Smokers</td>
<td>0.956 (0.129)</td>
<td>0.944 (0.117)</td>
</tr>
<tr>
<td>Smoking 1–10 vs. 0, Parity 0</td>
<td>0.420 (0.168)</td>
<td>0.415 (0.138)</td>
</tr>
<tr>
<td>Smoking 1–10 vs. 0, Parity 1+</td>
<td>0.761 (0.207)</td>
<td>0.740 (0.184)</td>
</tr>
<tr>
<td>Smoking 11+ vs. 0, Parity 0</td>
<td>0.410 (0.188)</td>
<td>0.523 (0.155)</td>
</tr>
<tr>
<td>Smoking 11+ vs. 0, Parity 1+</td>
<td>1.418 (0.198)</td>
<td>1.247 (0.165)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.76 (0.10)</td>
<td>-3.67 (0.094)</td>
</tr>
</tbody>
</table>
Results

- Estimated log(odds ratios) quite similar
- Somewhat larger SD's for case-control study
- Intercepts differ by approximately

\[\log \frac{q_d}{q_c} = \log \frac{1}{0.146} = 1.91 \]

where 0.146=1562/(11267-574), and 11267 is the number of women with information on gestational age at birth. Note that 100% (=1) of SGA women are sampled as cases.