Dynamic Treatment of Children with Leukaemia

Susanne Rosthøj1, Niels Keiding1 and Kjeld Schmiegelow2

1Department of Biostatistics, University of Copenhagen
2Pediatric Clinic II, University Hospital, University of Copenhagen

July 17 2008
ALL and data

Methods

Results
Acute Lymphoblastic Leukaemia (ALL)

ALL is treated with intensive chemotherapy. 75-80% cured by first-line chemotherapy.

No general rules on how to optimise treatment.

NOPHO ALL-92:

Nordic randomised study.
(Follow-up until 23.01.2008.)
The treatment

2-2.5 years of treatment:
Induction therapy
Consolidation therapy

Maintenance therapy (9-27 months)

Drugs:
- Methotrexate weekly.
- 6-Mercaptopurine daily.

Measurements:
- Weekly White Blood Counts (WBC) and Thrombocyte Counts (TC).

Target:
- Keep WBC within $1.5-3.5 \times 10^9$/L.
The protocol

Control group

Pharmacology group

- Increase
- Increase if drug concentrations are low
- Decrease (50%)
- Pause

Thrombocyte Count

WBC

0 100 200 300 400

0 1 2 3 4 5 6
Result of the NOPHO study

Probability of staying in remission (opdateres...):

- Probability of staying in remission
- Years since diagnosis

Graph showing the probability of staying in remission over years since diagnosis.
Goal

Estimation of an optimal dynamic treatment strategy:

• Murphy (2003), *JRSS. B.*

Estimation of a statically-optimal treatment strategy:

• Van der Laan, Petersen and Joffe (2005), *Int J Biostat.*
The setup

\(K + 1 \) measurements, \(j = 1, \ldots, K + 1 \).

\(S_j = (WBC_j, TC_j, \cdots) \): State variable.

\(D_j \): Dose.

\[\begin{array}{cccccc}
S_1 & \rightarrow & D_1 & \rightarrow & S_2 & \rightarrow & D_2 & \rightarrow & \cdots & \rightarrow & S_K & \rightarrow & D_K & \rightarrow & S_{K+1} \\
\end{array} \]

Notation:
\(\bar{D}_j = (D_1, \ldots, D_j) \)
\(\underline{D}_j = (D_j, \cdots, D_K) \)
Counterfactuals

Counterfactual variables:

\[
\begin{align*}
\text{Observed} & \quad \rightarrow \quad \text{Counterfactual} \\
D_1 & \rightarrow d_1 \\
S_2 &= S_2(D_1) \quad \rightarrow \quad S_2(d_1)
\end{align*}
\]

Counterfactual process:

\[
\bar{S}(\bar{d}_K) = (S_1, S_2(d_1), S_3(\bar{d}_2), \ldots, S_{K+1}(\bar{d}_K)), \quad \bar{d}_K = (d_1, \ldots, d_K).
\]

Counterfactual outcome:

\[
Y_{K+1}(\bar{d}_K) = f(\bar{S}(\bar{d}_K)) \quad (\text{eg. } S_{K+1}(\bar{d}_K))
\]
Optimal treatments

\[
\begin{aligned}
S_1 & \rightarrow D_1 \rightarrow S_2 \rightarrow D_2 \rightarrow \cdots \rightarrow S_K \rightarrow D_K \rightarrow Y_{K+1}
\end{aligned}
\]

\(Z_0\) baseline covariates.
Searching for decision rules \(d_j(\bar{S}_j, \bar{D}_{j-1}; Z_0), j = 1, \cdots, K:\)

Optimal (Murphy(2003) and Robins (2004)):
\[
E(Y_{K+1}(\bar{d}_K)|Z_0) \text{ is maximised.}
\]

Statically-optimal (van der Laan, Petersen and Joffe (2005)):
\[
E(Y_{j+m}(\bar{D}_{j-1}, \bar{d}_j)|(S_j, \bar{D}_{j-1}), Z_0) \text{ is maximised, } m \geq 1.
\]
d\(j\) is found as \(\arg \max_{d_j(\cdot)} \) [1]
History-Adjusted-Marginal Structural Models

Model conditional on $V_j \subseteq (S_j, \bar{D}_{j-1})$ and Z_0:

$$E(Y_{j+m}(\bar{D}_{j-1}, d_j)|V_j, Z_0) = \alpha + \beta' V_j + \gamma' d_j + \delta' Z_0.$$

A naive regression analysis will fail.

→

Inverse Probability of Treatment Weighted (IPTW) regression.

Weights:

$$\frac{1}{P(D_j = d_j|\bar{S}_j, \bar{D}_{j-1}, Z_0)P(D_j = d_j|V_j, Z_0)}.$$

Easy! Only requires modeling of the distribution of the doses (discrete).
Modeling the decision on the dose

D_j product dose.
$D_{j-1} > 0$.
Control group.

\bar{S}_j, \bar{D}_{j-1}

- **Increase:**
 \[D_j > D_{j-1} \]
 \[D_j = d_j^I(\bar{D}_{j-1}, \bar{S}_j) \]

- **No changes:**
 \[D_j = D_{j-1} \]

- **Decrease:**
 \[D_j < D_{j-1} \]
 \[D_j = d_j^P(\bar{D}_{j-1}, \bar{S}_j) \]

- **Pause:**
 \[D_j = 0 \]
A HA-MSM model

At least 2 weeks between consecutive measurements. \(m = 1 \).

Dose \(d_j \) = change of dose \((D_j/D_{j-1}) \).

The model conditional on \(V_j \subseteq (\bar{S}_j, \bar{D}_{j-1}) \) and \(Z_0 \):

\[
E \left(\log(WBC_{j+1}(\bar{D}_{j-1}, d_j)) \mid V_j, Z_0 \right) \\
\sim 1 \times \log(WBC)_j + \{\text{mean dose up to } (j - 1)\} \\
+ D_{j-1} + D_{j-1} \times \begin{cases} \\
I(d_j \in (0.0, 0.5)) \\
I(d_j \in (0.5, 1.0)) \\
I(d_j = 1.0) \\
I(d_j \in (1.0, 1.5)) \\
I(d_j > 1.5) \\
\end{cases}
\]

2904 measurements on 250 patients.
Estimates of the HA-MSM model

\[E\left(\log(WBC_{j+1}(D_{j-1}, d_j)) \mid V_j, Z_0 \right): \]

<table>
<thead>
<tr>
<th>Parameter ((V_j))</th>
<th>Estimate</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0419</td>
<td>0.0151</td>
<td>0.0055</td>
</tr>
<tr>
<td>(\log(WBC_j))</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mean dose up to ((j - 1))</td>
<td>0.5968</td>
<td>0.1218</td>
<td>\textless .0001</td>
</tr>
<tr>
<td>(D_{j-1} \times I(d_j \in (0.0, 0.5)))</td>
<td>1.3726</td>
<td>0.1170</td>
<td>\textless .0001</td>
</tr>
<tr>
<td>(D_{j-1} \times I(d_j \in (0.5, 1.0)))</td>
<td>0.4061</td>
<td>0.0887</td>
<td>\textless .0001</td>
</tr>
<tr>
<td>(D_{j-1} \times I(d_j = 1))</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(D_{j-1} \times I(d_j \in (1.0, 1.5)))</td>
<td>-0.5263</td>
<td>0.0656</td>
<td>\textless .0001</td>
</tr>
<tr>
<td>(D_{j-1} \times I(d_j > 1.5))</td>
<td>-1.3748</td>
<td>0.2352</td>
<td>\textless .0001</td>
</tr>
</tbody>
</table>
A statically-optimal decision

An example

Third measurement \((j = 3)\) of a Danish patient (girl, age 4.5):

\(WBC_3 = 4.20,\ TC_j=254.\)

6-months mean dose before \(j = 1= .2509\)

\(D_1 = D_2 = .30933.\)

<table>
<thead>
<tr>
<th>(d_3)</th>
<th>(EWBC(\bar{D}_2, d_3))</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0,0.5)</td>
<td>6.33</td>
<td>0.2125</td>
</tr>
<tr>
<td>(0.5,1.0)</td>
<td>4.69</td>
<td>0.1130</td>
</tr>
<tr>
<td>1.0</td>
<td>4.14</td>
<td>0.0365</td>
</tr>
<tr>
<td>(1.0,1.5)</td>
<td>3.52</td>
<td>0.0647</td>
</tr>
<tr>
<td>1.5+</td>
<td>2.70</td>
<td>0.1949</td>
</tr>
</tbody>
</table>

Observe \(d_3 = 1.0\) and \(WBC_4 = 3.0.\)

Further elaboration on the HA-MSM-model is needed...
Summary

NOPHO data:
Common setting in the treatment of many types of patients.

The search for optimal dynamic treatment strategies is difficult:
Available methods suffer from estimation difficulties.

Statically-optimal treatment regimes provide a useful alternative.