/* --------------------------------------------------------------- */ /* --------------------------------------------------------------- */ /* Uge 3: Kategoriske data. Tabeller */ /* --------------------------------------------------------------- */ /* --------------------------------------------------------------- */ /* Video 1: Sandsynligheder og binomialfordelingen (slide 1-26) */ * Ingen syntaks; /* Video 2: Tabeller. Relativ risiko, odds ratio. Case-kontrol studier (slide 27-72) */ * ***; * *** Slide 34-35 *** *; data gender; input type$ antal; datalines; D 7 P 1 ; run; proc freq data=gender; tables type / binomial(p=0.5); exact binomial; weight antal; /* fordi vi ikke skriver alle 8 linier */ run; * ***; * *** Slide 39-40 *** *; data farveblind; input gender $ farveblind $ antal; datalines; pige nej 119 pige ja 1 dreng nej 144 dreng ja 6 ; run; proc sort data=farveblind; by gender; run; * beregning af CI - bemærk at SAS hakker nedre CI af ved 0 for piger og derfor finder nedre CI til 0 og ikke -.008 som angivet i slides. Lene har derfor lavet den i hånden som p+/-1.96*sqrt(p*(1-p)/n) med p=.0083, n=120 (nedre CI skulle være angivet som -.0079 og ikke -.0080) ; proc freq data=farveblind; tables farveblind / binomial; exact binomial; weight antal; by gender; run; * ***; * *** Slide 45-56 *** *; proc freq data=farveblind; tables gender*farveblind / nopercent nocol chisq expected riskdiffc relrisk; exact riskdiff; weight antal; run; * ***; * *** Slide 60 *** *; proc power; twosamplefreq test=fisher groupproportions = (.01 .04) npergroup = . power = 0.8,0.9; run; * ***; * *** Slide 61 *** *; proc power; twosamplefreq test=fisher oddsratio = 1.5 refproportion = 0.01 npergroup = . power = 0.8,0.9; run; * ***; * *** Slide 64-65 - tænkt eksempel *** *; data farveblind2; input gender $ farveblind $ antal; datalines; pige nej 58 pige ja 21 dreng nej 62 dreng ja 99 ; run; proc freq data=farveblind2; tables farveblind*gender / nopercent relrisk; weight antal; run; * ***; * *** Slide 67 *** *; proc power; twosamplefreq test=fisher oddsratio = 1.5 refproportion = 0.5 npergroup = . power = 0.8,0.9; run; * ***; * *** Slide 69-73 *** *; data operation; input type $ komplikation $ antal; datalines; Gynecological ja 5 Gynecological nej 235 Abdominal ja 35 Abdominal nej 210 Orthopedic ja 6 Orthopedic nej 200 ; run; proc freq data=operation; tables type*komplikation / nopercent nocol chisq cellchisq expected; weight antal; run; /* --- Video 3: Confounding, Simpsons paradox. Parrede binære data (slide 73-82) --- */ * ***; * *** Slide 74-75 *** *; data nyresten; input size $ treat $ succes $ antal; datalines; small A nej 6 small A ja 81 small B nej 36 small B ja 234 large A nej 71 large A ja 192 large B nej 25 large B ja 55 ; run; proc freq data=nyresten; tables treat*succes / nopercent nocol relrisk; weight antal; run; proc sort data=nyresten; by size; run; proc freq data=nyresten; tables treat*succes / nopercent nocol relrisk; weight antal; by size; run; * ***; * *** Slide 80-83 *** *; data tuberkulose; input A $ B $ antal; datalines; + + 20 + - 12 - + 2 - - 16 ; run; proc freq data=tuberkulose; tables A*B / norow nocol; exact mcnem; weight antal; run;