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1 Introduction

This is an online supplement to the STRATOS guidance paper for intensity models. It
contains further background information on each of the three data sets, along with R code and
discussion for all of the items in the checklist. A subset of this forms the results and figures
for the examples section of the main paper. The files “intensity__supplement.pdf” (this file),
“intensity__supplement.Rmd” “refer.bib” and “pad.rda” are included in the supplementary
material for the journal and can also be found on the author’s web site: http://publicifsv.
sund.ku.dk/~pka/STRATOSTGS/.

No claim is made about whether R is the best language for this or other survival analyses.
However, reproducible code in at least one package is an important component of the
STRATOS document. The .Rmd file which generates this document can be found on the
site, it reveals all the code and can be further explored using R or Rstudio. Execution of the
.Rmd file will require the survival (version 3.1 or greater), dynpred, and timereg packages.

In some places the supplement will discuss alternative computations to those presented in
the paper; these are cases where multiple variants can be used to accomplish the checklist
goals; in each case our list will be far from exhaustive.

2 Peripheral Arterial Disease

2.1 Background

Peripheral arterial disease (PAD) is a common circulatory problem in which narrowed
arteries reduce blood flow to peripheral limbs, often the legs. It is also likely to be a sign of
a more widespread atherosclerosis, and subjects manifesting the disease carry an increased
risk for all atherothrombotic events including myocardial infarction, stroke, and cardiac
death. The pad data set contains the results of a Slovene study reported in Blinc et. al
[Blinc et al., 2017, Blinc et al. [2011]]. Briefly, the study was conducted by 74 primary
care physicians-researchers, each of whom was asked to recruit 10 subjects with PAD along
with 10 age and sex matched controls without PAD; actual recruitment ranged from 1 to
31 pairs. All participating subjects consented to a yearly examination and interview for 5
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years. Important endpoints are death, either due to cardiovascular disease (CVD death) or
other causes, non-fatal CVD endpoints of infarction and stroke, and patient interventions
attributed to the disease such as revascularization procedures.

The final study includes 742 PAD and 713 controls, with baseline data for each subject,
measurements at each visit, and endpoints. This analysis will focus on cardiac endpoints
and on overall mortality.

2.2 Endpoint and follow-up
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Figure 1: Time to each visit for the PAD study.

Before fitting covariate effects we look at the overall follow-up for subjects, and decide on a
time scale and an endpoint. Per the study design subjects should have a visit at years 1-5.
We see in Figure 1 that visit 1 dates are stretched out over a full year and by visit 5 over
almost 2 years, a pattern that is unavoidable in observational studies of human subjects.
Based on the counts shown in the figure there is no evidence of differential drop out between
the PAD and control subjects. Figure 2 shows the censoring pattern for subjects in the two
arms, computed using a reverse Kaplan-Meier. There is no evidence of differential follow-up.
Given the visit slippage of the first figure, an ideal censoring pattern would be a final followup
that is approximately uniformly distributed between 4.8 and 6.8 years, this is shown as
a dotted line on the figure. Per the counts on Figure 1 the total number of visits for the
subjects is not what was planned — about 25% do not have a fifth visit — but patients have
adhered to the 5 year time commitment quite closely. As stated in the primary paper, a
decision was made to truncate all patient data at 5 years for the purpose of analysis.

The starting R data has 3 dataframes:

e padl has one observation per subject containing baseline information,
e pad2 has one observation per subject visit containing measurements at that visit, and
e pad3 has an observation for each observed endpoint.
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Figure 2: Observed and ideal follow-up in the PAD study

The initial survival curves can be created using a copy of the baseline data, with follow-up
truncated at 5 years.

censor CV death nonCV death
1296 638 91

Our first analysis will use time since enrollment as the primary time scale. For the PAD
patients the time since diagnosis is a natural scale since it represents both the progression
of disease and of treatments for the disease. Survival curves for the control subjects serve
as a comparison outcome of similarly aged subjects without the disease, but do not have a
natural stand-alone interpretation. Figure 3 contains the overall Kaplan-Meier for PAD and
control subjects, male and female. Death rates are higher for males than for females, which
is no surprise given a mean age at entry of 65 years, and is higher for PAD subjects than for
the age matched controls. The right hand panel shows the curves on age scale.

Survival curves can equivalently display either the fraction who have died (curves start at 0)
or the fraction who have not died (curves start at 1); the choice between the two is often
based on tradition or habit. Pocock et. al. [Pocock et al., 2002] looked at the issue in a
more scientific way, and recommend using curves that start at zero as the most reliably
informative, particularly when the the overall death rate is < 30%; we will follow that advice.

2.3 Covariates and Cox model

The analysis will focus on the covariates of PAD, age, sex, and serum values for high density
and low density lipoprotein (HDL, LDL). Figure 4 shows density estimates for each of the
three continuous covariates at baseline, by PAD group. By study design there should be no
difference in the age distribution. HDL and LDL are slightly lower for the PAD subjects.
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Figure 3: Kaplan-Meier curves of overall survival.
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Figure 4: Distributions of three continuous covariates, by group. Blood value scales are in
mmol/L (lower) and mg/dl (above).



The Cox model fits will use age, sex, baseline values of high density and low density
lipoproteins (hd10, 1d10), time-dependent lipid values (hdl, 1d1), and a time-dependent
value of “years since enrollment” (etime). Time since enrollment only plays a role in age
scale models: in a time-since-entry model every one in a given risk set will have exactly the
same value of the covariate, and hence the estimated coefficient for the variable would be 0.

For time-dependent analysis we use a counting process form. Mathematically each subject
is represented by 3 processes: Y;(t) = 1 if the subject is currently at risk, X;(¢) is the time
dependent covariate process, and N(t) the cumulative number of events. In the R code this
translates into multiple observations for each subject of the form

id, timel, time2, event, x1, x2,

where (timel, time2) describe an interval over which the subject is at risk, event corre-
sponds to dN(t) and will be 1 of the subject had an event at time2 and 0 otherwise, x1, x2,

. are the value of the covariates over the interval, and id is a subject identifier. Subject 9,
for instance, is a male with blood values measured on days 0, 583, 945, and 1309, who died
on day 1349. Their data has the form

id tstart tstop death sex 1dl hdl

9 0 583 0 male 2.66 1.08
9 583 945 0 male 3.20 1.53
9 945 1309 0 male 2.81 1.32
9 1309 1349 1 male 2.51 1.30

The lipid values and time intervals encode the most recent measurement of the value. This
representation of counting process data is available in R, SAS, Stata and many other packages
that deal with survival data. (It first appeared in the S package in 1987.) Creation and
checking of the data often represents a major share of the work in an analysis. There is often
concern that because the data set has multiple rows for the same subject, a valid variance
estimate for the model will need to account for correlation.

This is not the case, however.

Internally, there is only one copy of each subject; the multiple rows are merely a way to
communicate to the program which covariate value is applicable at any given time point.

When there are competing risks, such as CVD and non-CVD death, the 0/1 event event
variable is replaced by a factor with levels of “none”, “CVD death”, “non-CVD death”, which
shows both when an event occurred and it’s type (this feature is available in version 3.1 or
later of the R survival package). Below we create separate time-dependent data sets for
analysis on the time-from-enrollment scale (pdata2), the age scale (pdata3), and for the
Poisson model (pdata4). (A normal analysis would choose only one of these, of course.) The
two data sets have separate event indicators for death, the competing risk of CVD /non-CVD
death, and for any CVD event/non-CVD death. Since the technical details of how to create
the data sets are not a primary focus of this document the code to do so is not shown by
default in the printed form, but as mentioned in the introduction it is present and viewable
in the online.Rmd source file.

2.3.1 Overall mortality

Results of the fits are either shown below or are gathered together in Table 1. The first pair
of fits shows that the estimated overall effects of PAD and sex hardly differ between analyses



Table 1: Coefficients from the Cox and Poisson models

Overall PAD Control p

HR (95% CI) HR (95% CI) HR (95% CI) PAD vs C

Time since enrollment scale

PAD 2.40 (1.71-3.37)

male sex 2.00 (1.40-2.86) 2.01 (1.31-3.08) 1.97 (1.02-3.79) 0.96
10 yr age 1.93  (1.57-2.37) 1.91 (1.49-2.45) 1.98 (1.36-2.89) 0.88
Age scale

PAD 2.40 (1.70-3.37)

male sex 2.02 (1.42-2.90) 2.01 (1.31-3.08) 2.01 (1.04-3.88) 1.00

yrs since entry  1.18  (1.05-1.33) 1.20 (1.05-1.38) 1.12 (0.91-1.39) 0.61

Poisson
PAD 2.38  (1.70-3.35)
male sex 2.01 (1.41-2.88) 2.03 (1.33-3.11) 1.97 (1.02-3.81) 0.95

done on the enrollment or age scales. A second pair fits looks at the coefficient effects within
the PAD and control groups. (Inclusion of the covariate by strata interactions gives results
that are equivalent to separate fits for the the PAD and control groups; bundling them as
a single model allows a formal test of whether the effects differ between the two strata.)
None of sex, enrollment age, or time since enrollment show meaningful differences between
the PAD and control groups. That is, on the log-hazard scale, PAD appears to act as an
additive risk.

An approach that allows for dual time scales is to use a Poisson regression model. To fit
the model first categorize each subject’s follow-up time into a set of discrete bins based on
current age and and enrollment time; We will use single single years for time since enrollment
and 5 year age groups. A Poisson model is then fit with the 0/1 death variable as the
response, a separate intercept for each time/age strata, and the length of the time interval
as an offset. This leads to 12 x5 = 60 separate intercepts in the model; to conserve space
these are omitted from the printout. (Because some cells have 0 subjects < 60 terms appear
in the final fit).

2.3.2 Cardiovascular death

Since PAD is expected to exert its primary effect via cardiovascular disease (CVD) endpoints,
a more interesting analysis is to focus on CVD rather than overall mortality. Since in this
case non-CVD death will be a competing risk this needs to be accounted for in our estimate of
the probability in state; in the R survival package this is accomplished by using a multi-level
categorical variable as the “status”, rather than 0/1. The survfit function then computes
Aalen-Johansen (AJ) estimates of a multi state model. The resulting curves are identical to
“cumulative incidence” curves in a competing risks case (the CI estimator is a special case of
the AJ estimate).

Figure 5 shows the Aalen-Johansen estimates of probability in state for CVD and non-CVD
death in the left panel (which could also be labeled as “absolute risk”, “competing risk”,
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Figure 5: Aalen-Johansen curves for CVD vs. non-CVD death outcomes (left) and for any
CVD event vs. death without CVD (right).

or “cumulative incidence”) and the AJ curves for first major CVD event (infarction, stroke,
CVD death) versus non-CVD death in the right panel. For controls, CVD deaths are about
1/2 of the non-CVD, approximately 2% versus 4% at 5 years; both outcomes are near 8% for
the PAD subjects. Nearly 14% of the PAD subjects experience a major CVD event versus
6% for controls.

The absolute risk curves require that all transitions in the model be considered jointly:
incorrect curves will result from a simple Kaplan-Meier of time to CVD, censoring at non-
CVD death, or a KM of time to non-CVD death, censoring at CVD. Interestingly, this is
not true for the cumulative hazard estimate: the naive estimate for one outcome, censoring
the others, will be identical to the joint estimate. The Cox model is a model for the hazards
and has the same identity: the first coxph call below, which models the entire process, will
have the same results for the CVD death portion as the second coxph call, which ignores
non-CVD deaths by censoring them; this is verified by the all.equal test. However, if
one desires to predict absolute risk curves from the fitted Cox model then the first form is
essential.

transitions table

to
from CV death nonCV death (censored)
(s0) 67 91 1275
CV death 0 0 0
nonCV death 0 0 0

cat("Competing risks death, using baseline lipids\n")
print (pcox1)
cat ("Competing risks death, using time-dependent lipids\n")



Table 2: Hazard ratios and 95% confidence intervals for the competing risks Cox models.

Baseline lipids  Time-dependent lipids
HR (95% CI) HR (95 CI)

CVD death
PAD 2.87 1.01-8.14 240 0.84-6.84
male sex 1.67 0.59-4.70 1.36 0.49-3.83
age (10) 1.93 0.87-4.26 2.01 0.90-4.45

HDL (mmol/l) 0.74 024228 021 0.06-0.75
LDL (mmol/l) 0.92 0.46-1.85 0.76 0.36-1.61

CVD event
PAD 2.42 1.04-5.66 2.27 0.97-5.31
male sex 1.56 0.82-2.96 1.54 0.82-2.92
age (10) 2.09 0.86-5.06 1.90 0.79-4.57

HDL (mmol/l) 0.56 0.21-1.49 0.48 0.18-1.29
LDL (mmol/l) 1.09 0.62-1.93 0.88 0.48-1.62

print (pcox2)

There were 67 CVD and 91 non-CVD deaths in 5 years of follow-up, which are the transitions
from the initial state (s0) to the CVD death and non-CVD death states, respectively, in the
transitions table. No one transitioned from death to another state, which would indicate
an error in the data set. Table 2 displays the coefficients for the fits with baseline and
time-dependent lipids, for both of the competing outcomes. The joint Cox model shows
that after adjustment for age, sex, and baseline lipids, PAD is associated with a 2.9 fold
increase in the rate of CVD deaths and a 1.9 fold increase in non-CVD death. Age and sex
are important predictors as well, as expected, with male sex having a somewhat larger effect
on the non-CVD endpoint. The effect of baseline lipid values was not significant, however,
time-dependent HDL shows an effect on the CVD death endpoint, somewhat reducing the
estimated effect of PAD on CVD death.

2.3.3 Any CVD event

An alternative analysis is to use all major CVD events (stroke, infarction, CVD death) as
the first endpoint and “death without a prior CVD event" as the competing endpoint. This
increases the number of CVD events to 142, while the number of competing events is 85.

At this point we are not interested in modeling the further transition from a non-fatal CVD
event to death (15 events), and so exclude those with a prior CVD event from the analysis.

to
from CVD event death (censored)
(s0) 143 85 1227
CVD event 0 15 69
death 0 0 0

The analysis on age scale and the analysis on time-since-enrollment scale give very similar
estimated effects. The large impact of time since enrollment in the age scale models may be



a surprise, but is actually a common finding for studies in non-acute settings that require
patient consent. Essentially, patients who are in extremis do not volunteer. In the first six
months after enrollment, it not uncommon to have a death rate that is less than 1/2 of the
overall population death rate. The risk set at age 71, say, might have subjects who have
been in the study for only a few months (recruited at age 71) and others on study for 4 years.
In addition, the PAD study explicitly excluded subjects with a malignancy within the last 5
years.

2.3.4 Evaluating linearity

Below we reprise the CVD portion of the fit, and investigate linearity for the serum lipids,
whose skewness may raise concerns. We can explore nonlinearity in several ways, in R fitting
a spline is a simple one.

The likelihood ratio test provided by the anova command shows that the gain in goodness
of fit from an HDL and/or LDL transformation is modest. The plot implies there is less
“high HDL” benefit after reaching a value of 1.5, which agrees with common guidelines;
together this suggests that a modified covariate hd12 = min(HDL, 1.5) might be the better
predictor. A final check for proportional hazards did not reveal any concerns.

Analysis of Deviance Table
Cox model: response is Surv(tstart, tstop, cvstat == "CVD event")
Model 1: ~ pad + agelO0 + sex + hdl + 1dl
Model 2: ~ pad + agel0 + sex + ns(hdl, 3) + ns(1dl, 3)
loglik Chisq Df P(>|Chil)

1 -985.67
2 -980.93 9.4697 4  0.05037
chisq df P
pad 0.413 1 0.520
agel0 3.249 1 0.071
sex 2.361 1 0.124
ns(hdl, 3) 6.453 3 0.092
ns(1ldl, 3) 2.343 3 0.504
GLOBAL 12.787 9 0.172

2.3.5 Predicted probability-in-state (survival) curves

Predicted P(state) curves can be created from the multi-state fits, as well. As with any Cox
model prediction, the first task is to choose a set of covariate values for which prediction
is desired. We create the predictions for four hypothetical male subjects with ages of 58
and 72 (quartiles of age), and PAD vs. control. For HDL and LDL use values of 1.3 and 3,
which are near the medians. (These curves are for the model of CVD death vs other death,
time-fixed hdl and 1dl.)

pad agel0 sex hdl0 1d10

1 PAD 5.8 male 1.3 3
2 Control 5.8 male 1.3 3
3 PAD 7.2 male 1.3 3
4 Control 7.2 male 1.3 3

strata data states
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The resulting set of absolute risk curves can be viewed as an array of estimates by stratum,
target covariates, and state. The pcox1 fit had no strata so the first dimension is 1. The
resulting curves are shown in Figure 7. Because a multi-state model can generate a very
large number of curves it is often helpful to break them into multiple panels.

3 NAFLD Study

3.1 Background

Non-alcoholic fatty liver disease (NAFLD) is defined by three criteria: presence of greater
than 5% fat in the liver (steatosis), absence of other indications for the steatosis such as
excessive alcohol consumption or certain medications, and absence of other liver disease [Puri
and J., 2012]. NAFLD is currently responsible for almost 1/3 of liver transplants and it’s
impact is growing, it is expected to be a major driver of hepatology practice in the coming
decade [Tapper and Loomba, 2018]. The nafld data set includes all patients with a NAFLD
diagnosis in Olmsted County, Minnesota between 1997 to 2014 along with up to four age
and sex matched controls for each case [Allen et al., 2018]. (Note that some changes to the
public data have been made to protect patient confidentiality; analysis results here will not
exactly match the original paper).

The goal of the study is to understand the progression of liver disease over time, whether
NAFLD subjects are at increased risk for death or other endpoints as compared to the
general population, and if so the amount of that increase. Because of the connection between
NAFLD and obesity, sorting out actual causality is challenging. A further challenge is that

10
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Figure 7: Predicted absolute risk curves from the multistate Cox model: dying of CVD
(solid) and from other causes (dashed) by PAD status, for a male enrolled at age 58 (left
panel) or 72 (right). The values of baseline HDL and LDL are 1.3 and 3, respectively.

only a minority of subjects are tested for NAFLD since this requires an abdominal scan.
Thus we can only address the progression of detected NAFLD.

3.2 Endpoint and follow-up

Because of the very wide age range in the NAFLD study, along with the fact that NAFLD
may well exist for many years before detection, the natural scale for the NAFLD study is
subject age. The resulting Cox model will compare the death rate of a subject with NAFLD
to non-NAFLD subjects of the same age. Age scale is also more natural for the control
subjects than “time since being selected as random match”.

Entry Time Subjects enter the study at the age of NAFLD diagnosis or selection as a control,
whichever comes first. Because NAFLD is often a disease of exclusion, a NAFLD diagnosis
followed shortly by the diagnosis of another liver disease is considered a false positive.
The analysis data set is restricted to “confirmed NAFLD”, i.e., if someone were diagnosed
on 2001-06-20, the index date for confirmed NAFLD would be 2002-06-20, assuming that
another liver diagnosis, death, or incomplete follow-up did not intervene. The follow-up of
the matched control subjects also commences on the “confirmed NAFLD” date. This is
important. If the matched subjects’ follow-up were started on 2001-06-20 then the control
has the opportunity to die during that first year while the case does not, leading to immortal
time bias.

Since NAFLD is not an acute condition, the primary endpoints of morbidity and death are
highly related to age, and the cases and controls match with each other on that scale.

This approach also mimics an idealized (but impractical) study which included the entire
population from birth forward, with time dependent NAFLD as the covariate; and the use

11



of an ordinary Cox model would be natural in that case.

Inclusion Criteria: When selecting the controls for any given NAFLD case at age a, it is very
important only to use information that was available at age a for the controls. We cannot
exclude subjects who have too short a follow-up (die or censored before age a + 2 say), later
have diabetes, or, most particularly, those who will later become NAFLD patients.

Each of these is a variant of immortal time bias. In this data set, 331 of the subjects selected
as controls were diagnosed with NAFLD at a later age. Care must be taken at the time
of analysis to correctly deal with these patients. The preliminary checks and figures will
treat each subject’s value at study entry as fixed, the hazard models will treat NAFLD as a
time-dependent covariate.

Endpoint: The primary focus of this analysis will be all cause mortality. The subjects in the
study are administratively censored at the end of 2017, when the data set was created. A
small number will be enter and leave the catchment area due to migration, but above the
age of 50 migration rates into or out of Olmsted county are very low [St Sauver et al., 2012],
about 1% a year. Dates are not included in the public data for confidentiality reasons, so we
cannot generate a censoring plot and relate it to enrollment.

Data: Create the data set with time-dependent covariate values for the 4 major covariates.
The variable naf1d0 is the subject’s NAFLD status at enrollment.
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Figure 8: Survival curves from age 50 forward, comparing NAFLD to non-NAFLD at study
entry, stratified by male/female.

Figure 8 shows the survival of the study stratified by sex and by NAFLD status at entry.
Using NAFLD at entry is similar in spirit to using intent-to-treat in a clinical trial, in that it
gives a reliable estimate but one that may underestimate the true clinical effect of a covariate.
Data is plotted on the age scale. A primary message of the plot is that a NAFLD female has
survival that is similar to a non-NAFLD male. Figure 9 shows the Nelson-Aalen estimates
for the same data.
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Figure 9: Nelson-Aalen estimates for the cumulative hazard from age 50, stratified by gender
and NAFLD.

When using an age scale the left hand portion of a survival curve can often be highly variable
due to small numbers, e.g. at the very first NAFLD age of 19 the study by definition only
has 144 =5 subjects. This high early variability can then affect the entire curve. A strategy
to combat this to to instead compute and plot S(¢[t > to), the future survival of those still
alive at age tg, with ¢y chosen so that the population at risk is “large enough”. The median
age of NAFLD in the study is 52, we chose in the figure to plot S(t|¢t > 50), the future
outcome given survival to age 50, in part because we know a priori that population death
rates before age 50 are low.

An alternate summary is to compute death rates by age group, sex, and time-dependent
NAFLD status. The resulting table is closely related to landmark analysis, since changes
in NAFLD status only apply forward in time. From ages 50 onward the death rates for a
NAFLD female are close to those for a male control. Figure 10 displays the tabular data in
graphical form.

Female control Female NAFLD Male control Male NAFLD

<50 0.9 2.6 1.9 2.8
50-60 2.5 5.9 5.2 8.3
60-70 5.4 14.8 11.6 22.8
70-80 18.0 28.1 23.4 37.2
80+ 82.7 92.3 95.3 124.4

4 Covariates and Cox model

For the Cox models the adjusting covariates of diabetes, hypertension and dyslipidemia are
all time dependent. These adjusters are all related to the “metabolic syndrome”, which in
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Figure 10: Death rates by age and sex, n = NAFLD, ¢ = control.

turn is related to obesity. The table below shows the prevalence of each of them at entry to
the study. Patients with NAFLD have higher rates of all the conditions.

Control NAFLD

diabetes 10 28
hypertension 25 44
dyslipidemia 44 71

Now fit Cox models for death, stratified by male/female, with and without the adjusters,
and then do separate fits for the males and females.

All males females
NAFLD only 1.62 1.60 1.65
NAFLD 1.43 1.45 1.39
Diabetes 1.77 1.64 1.94
Hypertension 1.24 1.16 1.33
Dyslipidemia 0.68 0.72 0.65

The first line of the table estimates the effect of NAFLD on death, without adjustment for
the covariates, while lines 2-5 show the multivariate model. First, the estimated effect of
NAFLD is attenuated when adjusting for the three covariates. The higher prevalence of
diabetes etc. explains a portion of the NAFLD effect. The overall NAFLD effect does not
differ markedly for males and females.

chisq df P
nafld 0.739 1 0.39
GLOBAL 0.739 1 0.39

chisq df P
nafld 8.97 1 0.0027
GLOBAL 8.97 1 0.0027
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The above shows tests for proportional hazards in the univariate model, separately for males
and females, with the result being a strong indication against PH in the females but not
in the males. These results are not surprising. In the preliminary plot of grouped rates
shown in Figure 10 the curves for males are approximately parallel on the logarithmic scale,
implying a constant ratio of hazards, whereas the female curves converge over time. More
interesting is the result of PH tests on the multivariate model:

chisq df P
nafld 1.009 1 0.3150
diab 8.776 1 0.0031
htn 3.021 1 0.0822
dyslip 0.838 1 0.3601
GLOBAL 9.366 4 0.0526

chisq df P
nafld 11.20 1 0.00082
diab 20.77 1 5.2e-06
htn 22.07 1 2.6e-06
dyslip 1.18 1 0.27816
GLOBAL 37.16 4 1.7e-07
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5 Advanced Ovarian data set

5.1 Background

The ovarian cancer data set contains follow-up on 358 subjects who were enrolled in two
trials of chemotherapy for advanced ovarian cancer, conducted in between 19xx and 19xx by
a multi-institution research network in the Netherlands. The eligibility criteria for enrollment
included pathologic confirmation of advanced disease, age less than 70 years, lack of serious
cardiac or renal disease, and favorable haematalogical status. Patients could not have a
second tumor, brain metastases, or prior radiation or chemotherapy. The data is extensively
analyzed in chapter 6 of [van Houwelingen and Putter, 2012], and further references can be
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found there as well.

Using covariates that were recorded at baseline it is desired to create a risk score that could
be used to categorize the patients at that point. Patient follow-up in the data set continued
for 6 years. Our analysis will focus on the following 3 covariates.

e FIGO: This is a staging system for ovarian cancer. Advanced ovarian cancer comprises
the stages 11T (n=262) and IV (n=96). Stage IV patients have a very poor prognosis.

e The diameter of the residual tumor after surgery, categorized as micro, < 1 cm, 1-2
cm, 2-5 cm, and > 5 cm.

o Karnofsky index. A measure of the patient’s functional status at the time of diagnosis.
A score of 100% is an indication of no physical limitations.

5.2 Endpoint and follow-up
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Figure 11: Censoring fraction and survival curves for the ovarian cancer study.

For a fatal condition such as advanced cancer, time from diagnosis forward is the most
natural time scale, since it is the time frame of most direct interest to both the patient and
the care provider. For a clinical trial such as this, the follow-up will be well-defined and
regular.

The left panel of Figure 11 shows the censoring pattern for the study, which follows the
expected “hockey stick” shape for a formal trial with 3 years of enrollment, 4 years of
follow-up after enrollment of the final subject, and no subjects lost to follow-up. The graph
shows no censoring before 4 years followed by an upward line corresponding to uniform
accrual each year, with perhaps a slight flattening near the top right. Such flattening, when
it occurs, normally corresponds to the earliest portion of the study when the accrual rate is
still increasing.

The Kaplan-Meier gives the overall pattern of survival for this cohort. Inclusion in the study
is based on each patient’s current condition, and the endpoint of death is unambiguous.
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Table 3: Data frequencies and univariate coefficients for the Ovarian Cancer data. (The
coefficient is 0 for the reference category.)

Diameter

micr. <lecm 1-2cm  2-5cm >5cm
29 67 49 68 145

0.00 0.42 0.93 1.02 1.23
FIGO

111 v

262 96

0.00 0.71

Karnofsky

6 7 8 9 10

20 46 47 108 137

1.17 081 0.31 0.07 0.00

For the ovarian study, the study timeline and endpoint are the simplest possible.

5.3 Covariates and Cox model

Table 3 shows the data distribution for three potential predictors, along with the coefficient
from a univariate Cox model. For each of the categorical predictors the first level corresponds
to the best expected outcome and is used as the reference level for the coding, while for
Karnofsky score the highest value is used. Each of the variables’ univariate effect is in the
expected direction. Karnofsky score will be treated as continuous in the multivariate model —
the categorical view in the table was for data examination.

An initial Cox model using all the covariates is below. The order of the variables in the
model is based on their univariate significance.

ovcoxl <- coxph(Surv(tyears, d) ~ Diam + FIGO + Karn+ Broders + Ascites, ova)
anova(ovcox1)

Analysis of Deviance Table

Cox model: response is Surv(tyears, d)

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chil)

NULL -1414.3

Diam -1395.5 37.6681 4 1.312e-07
FIGO -1386.2 18.6508 1 1.570e-05
Karn -1380.7 10.8876 1 0.0009681
Broders -1376.3 8.8128 4 0.0659532
Ascites -1374.7 3.1759 2 0.2043421

ovcox2 <- coxph(Surv(tyears, d) ~ Diam + FIGO + Karn, ova)
print (summary(ovcox2)$conf.int, digits=2)
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exp(coef) exp(-coef) lower .95 upper .95

Diam<lcm 1.38 0.73 0.73 2.57
Diaml-2cm 2.24 0.45 1.19 4.21
Diam2-5cm 2.38 0.42 1.29 4.39
Diam>5cm 2.53 0.39 1.40 4.57
FIGOIV 1.73 0.58 1.33 2.25
Karn 0.84 1.20 0.75 0.93

The most important covariates are the tumor diameter, FIGO stage, and Karnofsky index.
Broders’ grade adds only marginally to the first three and as seen above the univariate
ordering was not clear, and ascites adds very little. For simplicity we will retain only the
first three variables. The final model ovcox2 has 3 predictors and 6 coefficients.

5.4 Checking proportional hazards

Per the checklist it is important to check proportional hazards. Because of a long research
history on this topic there are a large number of ways to proceed with such a check, and
some strong opinions about which of them is “best”. We are more concerned that a check is
performed rather than exactly how the check is done; below we will use the ovarian data
set to illustrate a 3 by 2 matrix of common approaches. All of them are valid, and most
packages have facilities for one or more. The first dimension of the choice is at what level to
examine the proportionality assumption:

1. (highest): the risk score as a whole.
2. the effect of each term
3. the effect of each column of the X matrix.

For a continuous covariate levels 2 and 3 are the same. For a multilevel factor variable like
Diameter level 3 asks if the relative hazard for a single levels of diameter changes over time,
holding all the others fixed, while level 2 would be a multiple degree of freedom test. Level 1
can be assessed by using the overall risk score n = X 3 as a single covariate in a (new) Cox
model. It may be useful as a first check but since an immediate follow-up question would be
“which variable is the cause”, we will not pursue it further.

The two tests we will use are

o Add a specially constructed time dependent covariate z(t) = xg(t) to the model.
This was suggested in Cox’s original paper and so is available in nearly all packages.
The rationale is that if 3(t) = a + bg(t) for some prespecified function g, then the
coefficients a and b can be obtained by a fit that has both  and z = g(t)z as terms in
the model, and then testing if the constructed covariate z has a significant coefficient.
An advantage of the test is its simplicity, the disadvantage is that g(t) is arbitrary —
should it be ¢, log(t), log(1 +t), ...7 A correct or near correct choice will have high
power. The cox.zph function computes the score test version of this approach. It
also can plot a semi-parametric estimate of g(¢) based on the method of Grambsch
and Therneau Grambsch and Therneau [1994] that can help reveal outliers or other
influential points. The plot may suggest an appropriate form for g.

e The cumulative sum of martingale based residuals method of Lin, Wei, and Ying Lin
et al. [1993]. Since it is based on a maximum deviation (Kolmogorov-Smirnoff) the
user does not have to make a choice of g(t), making this the most robust choice. A
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Table 4: Proportional hazards test statistics for the ovarian data.

Score test cumulative sums
log(t)  rank(t) K-S
Diameter (overall) 0.229 0.110

Diam<1lcm 0.337 0.184 0.152
Diam 1-2cm 0.474 0.630 0.286
Diam 2-5c¢m 0.103 0.053 0.128
Diam >5cm 0.690 0.663 0.946
FIGO 0.118 0.555 0.616
Karno <0.001 0.001 0.028

disadvantage of the test is that it operates on each coefficient separately making the
assessment of a categorical variable more complex.

The p-values for the tests are shown in Table 4, and the code to generate them all is below.
We used both ¢(t) = log(t) and rank(¢) as test functions, the first is one of the more commonly
used choices, and the second has is robust to outliers in time.
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Figure 12: Proportional hazards plots for Karnofsky score based on the Grambsch and
Therneau, and on the Lin, Wei and Ying tests.

For this data set, at least, the results show that all three statistical procedures lead to the
same conclusion. Karnofsky score is the variable that is most implicated by the tests, and
methods 2 and 3 both provide a plot to go along with the test. These are shown in Figure
12. In the GT plot proportional hazards corresponds to a horizontal line at the estimated
Cox model coefficient. The plot for the GT method instead shows a rapid early drop in
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importance to near zero, implying that a 1 year old Karnofsky score is no longer predictive;
something that is not surprising for advanced cancer. In the plot for the cumulative sums
of residuals the gray lines are cumulative sums from a process under Hy that the model
assumptions hold and the black line is the process for the observed data. The Karnofsky
line is far from the center of the cloud, again showing a failure of proportional hazards.

5.5 Dealing with lack of PH

One approach to deal with the lack of proportional hazards is to fit a set of landmark models.
In this case we will break the data into three epochs of 0-2, 1-3, and 3-5 years, fitting a
separate model in each. Each epoch then uses the covariate values available at the start
of the epoch. (In this case there are no time-dependent covariates so all fits use the same
values.)

0-2 year 1-3 year 2-4

Diam<lcm 1.31 1.63 2.73
Diam1-2cm 2.92 2.89 2.17
Diam2-5cm 3.04 2.75 3.55
Diam>5cm 2.69 3.21 5.54
FIGOIV 1.76 1.70 1.64
Karn 0.77 0.89 1.07

We can predict the probability of survival for 1 more year for each of the three models,
varying the target Karnofsky score and stage, while holding the diameter at < 1 cm. Figure
13 shows the result. In the first epoch there is a large difference between a Karnofsky 100
and Karnofsky 80 subject (black vs red) in predicted survival, but this difference shrinks in
the 1-3 and 2-4 year epochs.

The effect of FIGO III vs IV (solid vs dashed), however, stays large across the time range.

= K100, FIGO Il K 80, FIGO IIl =K 80, FIGO IIl
== K80, FIGO Il = K 100, FIGO Il ¢ = K 100, FIGO Il
= K100, FIGO IV = K 80,FIGO IV , = K 80,FIGO IV
2 4 = K80,FIGOIV | 2 4 == K100, FIGO IV ¢ 2 4 == K100, FIGO IV
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Figure 13: Conditional probability of dying in each epoch.
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