
Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

Recap of Part 1

Per Kragh Andersen

Section of Biostatistics, University of Copenhagen

DSBS Course
Survival Analysis in Clinical Trials

January 2018

1 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

Overview

Definitions and examples

Simple estimation and testing

Regression models

Goodness of fit for the Cox model

www.biostat.ku.dk/˜pka/SACT18-part2

2 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

Definitions and examples

3 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

Examples

Time T to death or other event of interest from a well-defined
time origin:

Time from start of randomized clinical trial to death

or ... to some composite end-point

Time from randomization to occurrence of side effect

Time from birth to death

Time from birth to first marriage

Time from first employment to pension

Time from filling a cavity in a tooth to filling falls out

What is special about survival data?

(Right)-censoring: For some subjects the event is not observed
and we will only know an interval in which it did not occur.
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The two-state model for survival data

Alive Dead-
λ(t)

0 1

λ(t) ≈ P(state 1 time t + dt | state 0 time t)/dt

S(t) = P(state 0 time t) = exp(−
∫ t

0
λ(u)du)

F (t) = 1− S(t) = P(state 1 time t) is the cumulative

probability (‘risk’, cumulative incidence ) of death

over the interval from 0 to t

One-to-one correspondence between rate and risk
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More types of event of interest

Time from BMT to either relapse or death in remission

Time from randomization to the occurrence of an adverse event or to withdrawal

Time from entering a wait list until heart transplantation, or to death while on
wait list, combined with time to death after transplantation

Time from BMT to either relapse or death in remission, combined with time to
death after relapse

Time(s) from randomization to the occurrence of first, second, ... hypoglycemic
event

Time(s) from first diagnosis to first, second, ... re-admission to hospital

Time(s) from randomization to the occurrence of first, second, ... hypoglycemic
event, combined with time to an adverse event or to withdrawal

Time(s) from first diagnosis to first, second, ... re-admission to hospital,
combined with time to death

The first two are covered by the competing risks model.
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The competing risks multi-state model

Alive
0

Dead, cause k
k

Q
Q
Q
Q
Q
Qs

Dead, cause 1
1

�
�
�
�
�
�3

λ1(t)

λk(t)

ppp
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Basic parameters

Cause-specific hazards j = 1, ..., k (‘transition intensities’):

λj(t) ≈ P(state j time t + dt | state 0 time t)/dt.

State occupation probabilities:

1 Overall survival function:

S(t) = P(alive time t) = exp
(
−
∫ t

0

∑
j

λj(u)du
)
.

2 Cumulative incidences j = 1, ..., k:

Fj(t) = P(dead from cause j before time t) =

∫ t

0
S(u)λj(u)du.

Note that alle rates are needed to compute a single risk.
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Population and sample

We are used to considering our data as a sample from some
(target) population, and the parameters refer to this population.

That is no different in survival analysis, however, it is important to
realize that the target population is a complete population, i.e.,
without censoring.

Our ambition in survival analysis is therefore to draw inference on
parameters like the survival function S(t), the cumulative
incidence functions Fj(t) or the hazard functions λj(t) from a
potentially completely observed population based on incomplete
(censored) data.

This is quite ambitious and requires certain assumptions.
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Target population; censoring

For this ambition to be feasible:

1 the complete population should be well-defined

2 censoring should not leave us with a biased sample

Requirement 1 means that, for the simple survival data situation,
the event under study should happen for every one in the
population. In the competing risks model one of the events under
study should happen for every one in the population

Thus, we need to distinguish between situations where there are no
competing risks and where there are competing risks, and one
should note that the ‘box and arrows’ diagrams illustrate the
complete population.
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Independent censoring

Requirement 2 is the assumption of independent censoring (by
some denoted non-informative censoring).

This means that individuals censored at any given time t should
not be a biased sample of those who are at risk at time t.

Stated in other words: the hazard function λj(t) gives the type j
event rate at time t, i.e. the failure rate given that the subject is
still alive (T > t).

Independent censoring then means that the extra information that
the subject is not only alive, but also uncensored at time t does
not change the failure rate.

Independent censoring cannot be tested from the available data.
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The PBC-3 trial in liver cirrhosis

Lombard et al. (1993, Gastroenterology)

Multi-centre randomized trial in patients with primary biliary
cirrhosis.

Patients (n = 349) recruited 1 Jan, 1983 - 1 Jan, 1987 from six
European hospitals and randomized to CyA (176) or placebo (173).

Followed until death or liver transplantation (no longer than 31 Dec,
1989); CyA: 30 died, 14 were transplanted; placebo: 31 died, 15
were transplanted; 4 patients were lost to follow-up before 1989.

Primary outcome variable: time to death, incompletely observed due
to: liver transplantation, loss to follow-up, alive 31 Dec, 1989

In some analyses, the outcome is defined as ‘time to failure of
medical treatment’, i.e. to the composite end-point of either death
or liver transplantation

12 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

EBMT example

Data from the European group for Blood and Marrow
Transplantation (EBMT)

All (3982) chronic myeloid leukemia (CML) patients with an
allogeneic stem cell transplantation from an HLA-identical sibling or
a matched unrelated donor during the years 1997–2000.

Study effect of EBMT risk score with values 0–7, here grouped into
five groups: 0, 1 (n = 506), 2 (n = 1159), 3 (n = 1218), 4
(n = 745), and 5, 6, 7 (n = 354).

Points obtained from: donor type (2), stage (3), age (3: 20,40),
female-to-male (2), time from diagnosis (2: 12 mo.)

Failure from transplantation may either be due to relapse or to
non-relapse mortality (NRM). Often these two endpoints are taken
together to relapse-free survival (RFS), which is the time from
transplantation to either relapse or death, whichever comes first.
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Example: Drug discontinuations as competing risks

Data on time to drug discontinuation for different reasons in a
1-year RCT (n=559) of active drug vs placebo.

week Time in study

state

0 = Complete on drug (406)
1 = Adverse event (42)
2 = Withdrew consent (62)
3 = Other (49)

drug

0 = Placebo (188)
1 = Active (371)
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Malignant melanoma

205 patients with malignant melanoma (skin cancer) were operated
at Odense University Hospital between 1962 and 1977

All patients had radical operation, i.e. no treatment variable
relevant here. Purpose: study prognostic factors like sex, age,
thickness of tumor, ulceration

By the end of 1977: 57 had died from the disease, 14 had died from
other causes, and 134 were still alive

Primary outcome variable: survival time from operation, but also
mortality from disease is of interest

Primary outcome variable incompletely observed due to end of
follow up (and death from other causes)
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Simple estimation and testing
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The Kaplan-Meier estimator

Both for simple survival data and for competing risks we let
0 < t1 < t2 < ... be the distinct failure or censoring times,
dj(t1), dj(t2), ... the total number of failures of type j observed at
those times (typically 0 or 1), and Y (t1),Y (t2), ... the number of
subjects at risk at (i.e., just before) those times.

Then the Kaplan-Meier estimator (for ti ≤ t < ti+1) is (where
d(t) =

∑
j dj(t)):

Ŝ(t) =
(
1− d(t1)

Y (t1)

)(
1− d(t2)

Y (t2)

)
· · ·
(
1− d(ti )

Y (ti )

)
=

∏
ti≤t

(
1− d(ti )

Y (ti )

)
.
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The Nelson-Aalen estimator

This estimator of the integrated hazard function Λj(t) builds on
the same idea as the Kaplan-Meier estimator: estimate

λj(t)dt ≈ P(T ≤ t + dt,D = j | T > t) by
dj(ti )

Y (ti )
when t = ti

(where D is the failure indicator). That is,

Λ̂j(t) =
∑
ti≤t

dj(ti )

Y (ti )
.

Note how censored observations are used for both K-M and N-Aa:
a subject censored at ti gives rise to no jump in the estimator but
contributes to the size, Y (t) of the risk set for t ≤ ti .

For simple survival data, K-M is the product-integral of N-Aa.
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The Aalen-Johansen estimator

For simple survival data, the cumulative incidence F (t) = 1− S(t)
is estimated by ‘1-K-M’.
With competing risks, the Aalen-Johansen estimator for

Fj(t) =

∫ t

0
S(u)λj(u)du

builds on plug-in:

F̂j(t) =
∑
ti≤t

Ŝ(ti−1)
dj(ti )

Y (ti )
.

Recall that the ‘1-K-M estimator based only on cause j events’:

1− Ŝj(t) = 1−
∏
ti≤t

(
1−

dj(ti )

Y (ti )

)
is upward biased: Fj(t) ≤ 1− Sj(t).
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Cumulative incidence curves: EBMT risk group 5-7
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The logrank test

We want to compare hazard functions λ1(t) and λ2(t) in two
groups. (NB: ‘1’ and ‘2’ now refer to two groups and not to causes
of death.) However, the tests are equally applicable for
cause-specific hazards when there are competing risks.

Counting process notation: In group s we have: Ns(t) = number
of observed events in [0, t] (of the relevant type), Ys(t) = number
at risk just before time t.
Nelson-Aalen estimators for Λs(t) =

∫ t
0 λs(u)du:

Λ̂s(t) =

∫ t

0

1

Ys(u)
dNs(u), s = 1, 2.

Idea in general test statistic: look at K -weighted differences
between increments in Nelson-Aalen estimators:

U(t) =

∫ t

0
K (u)

(
d Λ̂1(u)− d Λ̂2(u)

)
.
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The logrank test

Different choices of K (·) provide different tests with different
properties.

The most common choice is

K (t) =
Y1(t)Y2(t)

Y1(t) + Y2(t)

leading to

U(t) = N1(t)−
∫ t

0

Y1(u)

Y1(u) + Y2(u)
(dN1(u) + dN2(u)).

Evaluated at t =∞ we get the logrank test:

U(∞) = ‘Observed’ - ‘Expected’ (in group 1).
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Likelihood

Data: (T̃i ,Di ), i = 1, ..., n where Di = j , j = 1, ..., k if observed
failure from cause j , Di = 0 if censored. (Special case: simple
survival data, k = 1 cause).
The likelihood can be written as a product over causes, j :

L =
n∏

i=1

S(T̃i )
k∏

j=1

(λj(T̃i ))I (Di=j)

=
n∏

i=1

(
exp(−

k∑
j=1

Λj(T̃i ))
) k∏
j=1

(λj(T̃i ))I (Di=j)

=
k∏

j=1

( n∏
i=1

exp(−Λj(T̃i ))(λj(T̃i ))I (Di=j)
)
.
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Piecewise constant hazard

The hazard function is λj(t) = λj` when s`−1 ≤ t < s` for
pre-specified intervals, 0 = s0 < s1 < ... < sL =∞.
The maximum likelihood estimator is most easily expressed in
counting process notation:

Nj(t) =
∑
i

I (T̃i ≤ t,Di = j), Y (t) =
∑
i

I (T̃i ≥ t).

Then

λ̂j` =
Nj (s`)−Nj (s`−1)∫ s`

s`−1
Y (t)dt

,

i.e., number of cause j failures in interval ` divided by the total
time at risk in interval `.
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Regression models

25 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

The Cox regression model

In the Cox model, the cause j hazard for individual i = 1, . . . , n, is

λji (t) = λj0(t) exp(βj1Xi1 + · · ·+ βjpXip)

= λj0(t) exp(βT
j Xi )

where βj1, . . . , βjp are regression parameters and Xi1, ...,Xip are
the covariate values for individual i . It is seen that hazards are
assumed to be proportional.

λj0(t) is the cause j baseline hazard, and no assumptions are made
about its shape.

Time t is the chosen time-variable, e.g. time since randomization
or age or disease duration.
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Cox’s partial likelihood function

Cox’s partial likelihood function is

L(β) =
∏
j

n∏
i=1

( exp(βT
j Xi )∑

`∈R(T̃i )
exp(βT

j X`)

)I (Di=j)
,

where R(t) is the risk set at time t.

The partial likelihood function may be obtained from the general
likelihood (for competing risks) by profiling out the baseline hazard
function(s) λj0(t).

Estimates of the parameters are obtained by maximizing L(β) and
the usual type of large-sample likelihood properties apply.
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The score function

The log-likelihood is

`(β) = log(L(β)) =
∑
j

n∑
i=1

I (Di = j)
(
βT
j Xi−log

∑
`∈R(T̃i )

exp(βT
j X`)

)
and the score is

U(β) =
d

dβ
`(β) =

∑
j

n∑
i=1

I (Di = j)
(
Xi −

∑
`∈R(T̃i )

X` exp(βT
j X`)∑

`∈R(T̃i )
exp(βT

j X`)

)

=
∑
j

∑
i

∫ ∞
0

(
Xi −

∑
` Y`(t)X` exp(βT

j X`)∑
` Y`(t) exp(βT

j X`)

)
dNji (t).

=
∑
j

∑
i

∫ ∞
0

(
Xi − X̄ (t)

)
dNji (t).
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The Breslow estimator

The cumulative cause j baseline hazard Λj0(t) =
∫ t

0 λj0(s)ds can
be estimated by the Breslow estimator

Λ̂j0(t) =
∑
T̃i≤t

I (Di = j)∑
`∈R(T̃i )

exp(β̂T
j X`)

,

=

∫ t

0

dNji (u)∑
` Y`(u) exp(β̂T

j X`)
,

where β̂j is the maximum likelihood estimate of βj . With no
covariates, the Breslow estimator is the Nelson-Aalen estimator

Λ̂j0(t) =
∑
T̃i≤t

I (Di = j)

Y (T̃i )
.
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The stratified Cox model

The proportional hazards assumption for a categorical covariate
may be relaxed by considering the stratified Cox model.
For survival data (i.e., for simplicity we consider the situation
without competing risks) the model is:

λi (t) = λs0(t) exp(βTXi ), for i in stratum s, s = 1, ..., k .

In the simplest stratified model, the regresison parameter β is the
same for all s (an assumption which may be relaxed). If all the βs
are stratum-specific then the model is the same as what we get by
fitting a Cox model separately for each s ‘PHREG BY s’.

The Cox partial likelihood is a product over strata and the
cumulative baseline hazard Λs0(t) may be estimated by a Breslow
estimator.
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Predicted probabilities from Cox model for survival data

We have the relationship between survival and hazard functions

S(t | X ) = [exp(−Λ0(t))]exp(βTX ) = [S0(t)]exp(βTX ).

The predicted survival probabilities from a Cox model for
covariates X are

Ŝ(t,X ) = Ŝ0(t)exp(β̂TX ),

where
Ŝ0(t) = exp(−Λ̂0(t)),

using the Breslow estimator for Λ0(t) (or alternative estimators for
S0(t)).

31 / 65



Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model

Estimation of cumulative incidences from hazards

Estimate Fj(t | X ) by plug-in:

F̂j(t | X ) =

∫ t

0
Ŝ(u− | X )d Λ̂j(u | X ).

Here,

Λ̂j(u | X ) = Λ̂j0(u) exp(β̂j1X1 + ...+ β̂jpXp)

is the cumulative cause-j-hazard estimate from the Cox model and
Ŝ(u | X ) the Cox model based estimator for the overall survival
function, e.g.,

Ŝ(u | X ) = exp

−∑
j

Λ̂j(u | X )

 ,

or, preferably, the corresponding product-integral estimator.
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Cumulative incidences from cause-specific Cox models

Important to notice:

The Cox models impose a simple structure between covariates
and rates.

Due to the non-linear relationship between rates and risks in a
competing risks model, this simple relationship does not carry
over to the cumulative incidences.

In particular, the way in which a covariate affects a rate can
be different from the way in which it affects the corresponding
risk: this will depend on how it affects the rates for the
competing causes.

In the EBMT example we saw this phenomenon when
stydying group 2 vs. 0,1, relapse
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Cumulative incidence regression models

The fact that plugging-in cause-specific hazard models does not
provide parameters that in a simple way describe the relationship
between covariates and cumulative incidences has led to the
development of direct regression models for the cumulative
incidences: ‘marginal’ models.
The most widely used such model is the Fine-Gray model. Recall
from a Cox model for all-cause mortality that:

log(− log(1− F (t | X ))) = log(Λ0(t)) + βTX .

Fine & Gray (1999, JASA) studied the similar model for a
cumulative incidence:

log(− log(1− Fj(t | X ))) = log(Λ̃0j(t)) + β̃T
j X .
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The Fine-Gray model

The resulting derivative λ̃j(t) is denoted the sub-distribution
hazard and the Fine-Gray model is thus a proportional
sub-distribution hazards model. However, a problem is that, while
the hazard function has the useful “rate” interpretation:

λ(t) ≈ P(death before t + dt | alive t)/dt, dt small,

and so has the cause-specific hazard:

λ1(t) ≈ P(death from cause 1 before t+dt | alive t)/dt, dt small,

the sub-distribution hazard has not. Thus

λ̃1(t) ≈ P(death from cause 1 before t + dt |
either alive at t or death from a competing cause by t)/dt, dt small.
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Estimation with complete data

With no censoring, Fine and Gray defined the cause j “risk set”

R̃j(t) = {i : (Ti ≥ t) or (Ti ≤ t,Di 6= j)}

and β̃j is estimated by the partial likelihood score equation

Uj(β̃j) =
∑
i

I (Di = j)
(
Xi −

∑
`∈R̃j (Ti )

X` exp(β̃T
j X`)∑

`∈R̃j (Ti )
exp(β̃T

j X`)

)
= 0

corresponding to replacing times of failure from causes other than
j by +∞.
Using counting process notation

Uj(β̃j) =
∑
i

∫ ∞
0

(
Xi −

∑
` Ỹj`(t)X` exp(β̃T

j X`)∑
` Ỹj`(t) exp(β̃T

j X`)

)
dNji (t) = 0

with Ỹji (t) = 1− Nji (t−), i.e. no cause j failure by time t.
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Estimation with censored data

With known (e.g., “administrative”) censoring (at Ui ), the cause j
risk set is replaced by

R̃j(t) = {i : (Ti ∧ Ui ≥ t) or (Ti ≤ t,Di 6= j ,Ui ≥ t)},

i.e. Ỹji (t) is replaced by Ỹji (t)I (Ui ≥ t), that is, no cause j failure
and no censoring by time t.
With general censoring, an Inverse Probability of Censoring
Weighted (IPCW) score equation is used and to do this, a model
for censoring is needed.
In the simplest case, one uses the ‘Kaplan-Meier for censoring’,
that is, estimating G (t) = P(U > t) (in this analysis ‘failures are
censorings’).
If censoring depends on covariates then a model for
G (t | X ) = P(U > t | X ) is needed for the weights, e.g. a Cox
model.
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Estimation with censored data

For this to work, we define the weights

wi (t) = I (Ui ≥ Ti ∧ t)
Ĝ (t)

Ĝ (T̃i ∧ t)
,

and Fine and Gray showed that if (in the simplest case) Ui is
independent of (Ti ,Di ) and Xi then the ‘score’ equation

Ũj(β̃j) =
∑
i

∫ ∞
0

(
Xi−

∑
` w`(t)Ỹj`(t)X` exp(β̃T

j X`)∑
` w`(t)Ỹj`(t) exp(β̃T

j X`)

)
wi (t)dNji (t) = 0

is an unbiased estimating equation yielding consistent estimates of
β̃.
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Estimation with censored data

The resulting weights are as follows:

t, T̃i Status I (Ui ≥ Ti ∧ t) Ỹji (t) wij(t)

t ≤ T̃i Di = 0 1 1 1
Di = j 1 1 1
Di 6= 0, j 1 1 1

t > T̃i Di = 0 0 1 0

Di = j 1 0 Ĝ (t)/Ĝ (T̃i )

Di 6= 0, j 1 1 Ĝ (t)/Ĝ (T̃i )

After an observed time of failure (from a cause 6= j), a subject gets
a smaller and smaller weight as time passes (and it is, therefore,
less and less likely that the subject would still be uncensored).
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Robust variances (in general)

Let θ̂ be the solution to the unbiased estimating equation
U(θ) = 0.
Taylor expansion of U(·) around the true value, θ0 yields:

U(θ) = U(θ0) + U
′
(θ∗)(θ − θ0)

with θ∗ on the line segment between θ and θ0. Inserting θ̂ and
re-arranging we get:

n1/2(θ̂ − θ0) ≈ −U ′(θ0)−1(n−1/2U(θ0)).

A CLT for n−1/2U(θ0) (sum of independent terms) gives a CLT for
n1/2(θ̂ − θ0) and the robust (‘sandwich’) variance estimate is

(U
′
(θ̂)−1)T(

∑
i

Ui (θ̂)TUi (θ̂))U
′
(θ̂)−1.
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Estimating the baseline sub-distribution hazard

There is a ‘Breslow-type’ estimator for Λ̃0j(t).
With the weights wi (t) the estimator is

̂̃
Λ0j(t) =

∑
i

∫ t

0

wi (u)dNji (u)∑
` w`(u)Ỹj`(u) exp(β̃T

j X`)
.

Fine and Gray (1999) provided asymptotics for the estimator and
discussed covariate-specific predicted cumulative incidences based
on the model:

F̂j(t | X ) = 1− exp(−̂̃Λ0j(t) exp(β̃T
j X )).

This is, in fact, the cumulative incidence estimator provided by SAS

PROC PHREG.
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Rates vs. risks?

Competing risks ‘analogy’:
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Gladiators

Suppose that a gladiator may lose via two quite different
mechanisms: lions or fellow gladiators.

When training a gladiator, he should both be prepared to face a
lion or a fellow gladiator, and special skills may be needed to face a
lion (even in the presence of the competing risk) and, similarly,
special skills may be needed to beat a fellow gladiator. The
cause-specific hazards describe how these mechanisms depend on
properties and equipment of the gladiator.

For Caesar to predict the number of remaining gladiators still
around at time t, and how many are lost due to lions or fellow
gladiators, both risks must be considered. He needs the cumulative
incidences given the distribution of properties and equipment of
the population of gladiators.
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Goodness of fit for the Cox model
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Checking assumptions for the linear predictor

This is not different from any other model with a linear predictor
(e.g., linear or logistic regression).

No interaction between Xi1 and Xi2 can be tested by adding
suitable interaction terms to the model

Linearity for a quantitative X may be tested by adding, e.g.,
quadratic terms X 2 or linear splines to the model. For chosen
cut-points, say a1, a2, add

(X − a1)I (X > a1) and (X − a2)I (X > a2)

to a model that also includes X . The dose-response
relationship between X and the log(hazard) is then a broken
straight line and coefficients for the linear splines give the
change in slope at each cut-point.

Martingale residuals
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Checking proportional hazards

Graphical methods based on the stratified model, e.g. by
ploting log(Λ̂0s(t)) against t (or log(t)) for each stratum s
and see if curves have constant vertical distance

Modeling time-dependent effects via interactions with
functions of time, e.g. add X · I (t > τ) or X · log(t) to a
model including X

Score (‘Schoenfeld’) residuals

ASSESS statement in PROC PHREG uses martingale or score
residuals (code below).
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Example: malignant melanoma, death from disease

Cox model with sex, thickness, ulceration:

Covariate β̂ SD

Sex (m vs. f) 0.459 0.267
Thickness (mm) 0.113 0.038
Ulceration (yes vs. no) 1.170 0.311
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Linearity of tumor thickness

Add the linear splines

(thickness− aj)I (thickness ≥ aj)

for some cutpoints a1, a2, · · · , e.g. 2 and 5 mm, to the previous
model.

Covariate β̂ SD

Sex 0.457 0.289
Thickness 1.006 0.440
Ulceration 0.884 0.326
(thickness− 2)I (thickness ≥ 2 mm) -0.968 0.530
(thickness− 5)I (thickness ≥ 5 mm) 0.042 0.205

Likelihood ratio test statistic for the reduction of the model: 5.36
(2 d.f.), P = 0.07.
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Linearity of log(tumor thickness)

Replace thickness by log(thickness):
Covariate β̂ SD β̂ SD

Sex 0.401 0.285 0.381 0.271
Ulceration 0.884 0.328 0.939 0.324
log(thickness) 0.965 0.525 0.576 0.179
(log(thickness)− log 2)I (thickness ≥ 2) -0.536 0.894 — —
(log(thickness)− log 5)I (thickness ≥ 5) -0.077 1.029 — —

Likelihood ratio test statistic for the reduction of the model: 0.86
P = 0.65.

Proportional hazards: to make the plots for thickness, data have
been stratified at 2 and 5 mm.
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Sex
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Ulceration
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Tumor thickness
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Example: malignant melanoma, death from disease

Add, in turn, the time-dependent covariates

1 z5(t) = sex · (log(t)− 7),

2 z6(t) = ulceration · (log(t)− 7),

3 z7(t) = I (2 mm ≤ thickness < 5 mm)(log(t)− 7),

z8(t) = I (thickness ≥ 5 mm)(log(t)− 7),

Time, t is in days and 7 ' log(3 · 365)
Covariate β̂ (SD) β̂ (SD) β̂ (SD)

Sex 0.352 (0.276) 0.372 (0.270) 0.419 (0.271)
Ulceration 0.932 (0.324) 1.048 (0.360) 0.960 (0.326)
log(thickness) 0.582 (0.180) 0.576 (0.181) 0.547 (0.191)
z5(t) -0.408 (0.394)
z6(t) -1.189 (0.589)
z7(t) -0.677 (0.594)
z8(t) -1.513 (0.600)
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Tests for proportional hazards

1 sex: 1.12, 1 d.f., P = 0.29.

2 ulceration: 5.20, 1 d.f., P = 0.02.

3 thickness: 8.28, 2 d.f., P = 0.02.

For a model stratified by ulceration
Covariate β̂ (SD) β̂ (SD) β̂ (SD)

Sex 0.402 (0.271) 0.360 (0.270)
log(thickness) 0.538 (0.191) 0.560 (0.178) 0.589 (0.175)
z7(t) -0.367 (0.663)
z8(t) -1.201 (0.636)

Here, the P-value for proportional hazards for log(thickness) is
0.06 and the P-value for the effect of sex is 0.18.
Note that each test for a given variable assumes that the model
fits for the other variables in the model.
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Martingale residuals

Consider a given event (no cause j in notation though the event
could be a given cause of failure).
Recall that the counting process for subject i is

Ni (t) = I (T̃i ≤ t,Di = 1)

and counts +1 at the observed time of failure. Note that
Ni (∞) = Di . Let Yi (t) = I (T̃i ≥ t) be the at-risk indicator for
subject i . Then the martingale residual (process) is

Mi (t) = Ni (t)−
∫ t

0
Yi (u) exp(βTXi )λ0(u)du

which is ‘estimated’ as:

M̂i (t) = Ni (t)−
∫ t

0
Yi (u) exp(β̂TXi )d Λ̂0(u).

Often, the martingale residual is simply defined as M̂i (∞).
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Martingale residuals

Martingale residuals may be used directly to check the functional
form of a quantitative covariate (e.g., log-linearity): plot M̂i (∞)
against Xi and smooth.
Plotting cumulative martingale residuals against the covariate, it is
possible (Lin, Wei and Ying, 1993, Biometrika) to get a
significance test.
This significance test is based on re-sampling from the distribution
of the process under the model and evaluating where, in the
re-sampled distribution, the observed process is.
We illustrate the method on the melanoma data, death from the
disease, tumor thickness.
The technique is available in PROC PHREG (ASSESS statement)
(and in the R-package timereg).
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Score (Schoenfeld) residuals

The score for covariate j is:

Uj(β,∞) =
∑
i

Di

(
Xij −

∑
`∈R(T̃i )

X`j exp(βTX`)∑
`∈R(T̃i )

exp(βTX`)

)
, j = 1, ..., p.

The term Uij(β,∞) for subject i (only failures) is the score- (or

Schoenfeld-) residual: Uij(β̂,∞) = Xij − Ej(β̂,Ti ).
The score process Uj(β, t) only adds terms for subjects with
Ti ≤ t.
A scaled (or weighted) version divides by the estimated variance
(say, Vj) of Uj (or by

√
Vj).

A calculation shows the following relation with the martingale
residuals:

Uj(β̂, t) =
∑
i

∫ t

0
XijdM̂i (s).
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Score (Schoenfeld) residuals

Scaled Schoenfeld residuals may be used directly to check for
proportional hazards for a covariate: plot the scaled residual
against Ti or against a function f (Ti ) and smooth. A horizontal
curve suggests proportional hazards and a test based on the
correlation between Uij(β̂,∞)/Vj and f (Ti ) is available (ZPH
option in the PROC PHREG statement, as well as in Stata and in
R).
Plotting cumulative scaled score residuals (i.e., the scaled score
process) against time, it is possible (Lin, Wei and Ying, 1993,
Biometrika) to get a (better!) significance test.
This significance test is based on re-sampling from the distribution
of the process under the model and evaluating where, in the
re-sampled distribution, the observed process is.
We illustrate the cumulative residual method on the melanoma
data, death from the disease.
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Score residuals (stratified model)
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Doing it is SAS

PROC PHREG DATA = melanoma;

CLASS ulc sex;

MODEL days*dc(2 3)=ulc sex logthick / RL;

ASSESS VAR =( logthick) PH / RESAMPLE =1000;

RUN ;
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