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Abstract

In many biomedical studies, the event of interest can occur more than once in a partici-

pant. These events are termed recurrent events. However, the majority of analyses focus

only on time to the first event, ignoring the subsequent events. Several statistical models

have been proposed for analysing multiple events. In this paper we explore and illustrate

several modelling techniques for analysis of recurrent time-to-event data, including condi-

tional models for multivariate survival data (AG, PWP-TT and PWP-GT), marginal means/

rates models, frailty and multi-state models. We also provide a tutorial for analysing such

type of data, with three widely used statistical software programmes. Different

approaches and software are illustrated using data from a bladder cancer project and

from a study on lower respiratory tract infection in children in Brazil. Finally, we make rec-

ommendations for modelling strategy selection for analysis of recurrent event data.
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Key Messages

• Several approaches have been proposed in the literature to account for intra-subject correlation that arises from re-

current events in survival analysis.

• The five reviewed models for analysis of recurrent time-to-event data differ in assumptions and in interpretation of

the results.

• Choice of the appropriate approach for analysis of recurrent event data is determined by many factors, including

number of events, relationship between consecutive events, effects that may or may not vary across recurrences, bio-

logical process, dependence structure and research question.

• Many statistical challenges arise when analysing recurrent time-to-event data and the researcher should be careful to

address them adequately.
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Introduction

Many diseases and clinical outcomes may recur in the

same patient. Examples of recurrent events include admis-

sions to hospitals, falls in elderly patients, migraines,

cancer recurrences, upper respiratory and ear infections. A

common characteristic among these events is the intrinsic

correlation between those occurring in the same subject. If

the correlated nature of the data is ignored, the confidence

intervals (CI) for the estimated rates could be artificially

narrow and the null hypothesis is rejected more often

than it should be. Hence, adjustments for within-individual

correlation must be done.

There has been a considerable amount of discussion on

methods of analysis for recurrent or repeated events in

biostatistics, epidemiological and medical literature.1,3–13

Nevertheless, inefficient or inappropriate statistical

approaches are still used to analyse such type of data. The

most well-known approach for analysis of survival data is

the Cox proportional hazards model.2 Due to the inde-

pendence assumption, the original Cox model is only ap-

propriate for modelling the time to the first event,2 which

is an inefficient use of data because data from the later

events are discarded. Another approach is to model the

number of events for each patient and fit Poisson or nega-

tive binomial models, which more recently were integrated

into generalized estimating equations (GEE) and random

effects models for taking into account the correlation of

events. However, this is also inefficient use of data because

information as to the timing of events is not used.

Extensions of the original Cox model have been proposed

for analyses of recurrent event data such as Andersen-Gill

(AG),3 Prentice, Williams and Peterson (PWP) (total and

gap times),4 Wei, Lin and Weissfeld (WLW)5 and frailty

models.6 Another analysis strategy is through modelling

the mean number of events or their occurrence rate.7,8,13

More recently, multi-state models (MSM) have been ex-

tended for recurrent events,14,15 but their application for

analysis of epidemiological data is still limited.

Although there are several well-developed statistical

methods for analysing recurrent event data, no comprehen-

sive tutorial is available for epidemiologists and re-

searchers in related areas. Therefore, the main aim of this

paper is to summarize different approaches to modelling

recurrent time to event, providing some general guidelines

for choosing the appropriate approach and its impact on

the interpretation of results. This paper is intended for epi-

demiologists and researchers with some statistical know-

ledge. We demonstrate the analysis with three commonly

used statistical software programs for analysing epidemio-

logical data—SAS, Stata and R. The models are illustrated

using two applications: (i) a study on tumour recurrences

in patients with bladder cancer;5,16 and (ii) a randomized

trial evaluating the effect of high doses of vitamin A on oc-

currence of acute lower respiratory-infections (ALRI) in

children.17 These two applications differ on sample size,

censoring percentage, number of recurrences and data

structure.

Methods

Review of the general theory

Two important features of recurrent event data are that

the events are ordered and that the subject can only be at

risk for one such event at a time. Figure 1 displays an illus-

trative scheme of recurrent events for five subjects. Among

those subjects, three had at least two events (represented

by black dots). Two of the subjects were censored (repre-

sented by unfilled circle at the end of individual’s line seg-

ment) at the end of the study, at 60 months; the others

dropped out of the study earlier for reasons not related to

the events of interest. Patient 1 had the largest number of

events, 6, at times 4, 6, 9, 12, 15 and 28 months, wheras

patient 3 had only two events at times 12 and 47 months.

We discuss five different modelling approaches. We

assume that, conditional on the covariates, the event and

censoring times are independent (independent censoring

assumption). These models differ in assumptions and the

data layout for analysis (Appendix 1, available as

Supplementary data at IJE online). Another major differ-

ence among them is the way the repeated events are mod-

elled. Many models assume that future events depend only

on the immediate past (AG, PWP, MSM), also known as

Figure 1. Schematic plot for recurrent time-to-event data for five hypo-

thetical subjects.
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Markov process, whereas others assume dependency upon

shared random effects (frailty models). The marginal

means/rates model, on the other hand, characterizes the

means/rates of the counting process and it allows arbitrary

dependence structures among recurrent events. Hence,

each model provides answers for a slightly different re-

search question.

Models

The Andersen and Gill model

The counting process model of Andersen-Gill (AG) gener-

alizes the Cox model, which is formulated in terms of in-

crements in the number of events along the time line.3 The

outcome of interest is time since randomization for a treat-

ment (or other exposure) until an event occurs, i.e. time

since study entry, also known as total time scale. It uses a

common baseline hazard function for all events and esti-

mates a global parameter for the factors of interest. The

Andersen and Gill (AG) model assumes that the correlation

between event times for a person can be explained by past

events, which implies that the time increments between

events are conditionally uncorrelated, given the covariates.

It is a suitable model when correlations among events for

each individual are induced by measured covariates.11

Thus, dependence is captured by appropriate specification

of time-dependent covariates, such as number of previous

events or some function thereof. However, if this assump-

tion does not hold, a remedy is to use a robust sandwich

covariance matrix for the resulting regression coefficient

estimators,2 which uses a jacknife estimate to anticipate

correlations among the observations and provides robust

standard errors. The AG model is usually indicated for

analysing data when all dependence between subsequent

events is mediated through time-varying covariates and the

interest is in the overall effect on the intensity of the occur-

rence of a recurrent event. This approach has been used to

evaluate repeated occurrence of basal cell carcinoma2 and

hospitalizations due to all causes and to cardiovascular dis-

eases in the elderly,9 for instance.

Prentice, Williams and Peterson models

The Prentice, Williams and Peterson (PWP) model analyses

ordered multiple events by stratification, based on the

prior number of events during the follow-up period.4 All

participants are at risk for the first stratum, but only those

with an event in the previous stratum are at risk for the

successive one.1 The model can incorporate both overall

and event-specific effects for each covariate. In practice the

data may need to be limited to a specific number of recur-

rent events if the risk set becomes very small for later strata

and event-specific estimates become too unreliable.12

Besides using the same outcome (total time: TT) as in the

AG model, the PWP model can also be usually defined in

terms of gap time (GT), which is the time since the previ-

ous event. When using a gap or waiting-time scale, the

time index is reset to zero after each recurrence of the

event, with assumption of a renewal process. Gaps be-

tween events are often useful with infrequent events, when

a renewal occurs after an event or when the interest lies on

prediction of a next event. Hence, two stratified PWP mod-

els can be fitted: PWP-TT, which evaluates the effect of a

covariate for the kth event since the entry time in the study;

and the PWP-GT, which evaluates the effect of a covariate

for the kth event since the time from the previous event.

Unlike the AG model, the effect of covariates may vary

from event to event in the stratified PWP models.

Therefore, the PWP models might be preferable to the AG

model when the effects of covariates are different in subse-

quent events, which is likely to be the case for diseases

such as viral infections because of the development of im-

munity, or pulmonary exacerbations in patients with cystic

fibrosis.

The marginal means/rates model

An alternative model is the marginal means/rates

model,8,13,18–20 which can be interpreted in terms of the

mean number of events when there are no time-dependent

covariates. This approach does not specify dependence

structures among recurrent event times within a subject.

However, since the marginal means/rates model considers

all recurrent events of the same subject as a single counting

process and does not require time-varying covariates to

reflect the past history of the process, this model is more

flexible and parsimonious than AG model.8 If no time-

dependent covariates are included in the AG model to

account for all the influence of the prior events on future re-

currences, point estimates from the means/rates model and

the AG model are the same. Nevertheless, the covariance

matrix estimate for the regression coefficients for the mar-

ginal means/rates model uses score residuals in the middle

of the sandwich estimate, which corrects for the depend-

ency structure. This approach can be of interest in many

medical applications when the dependence structure is com-

plex and unknown, especially when it cannot be character-

ized by including time-varying covariates, as in the AG

model. The marginal model is appropriate when the de-

pendence structure is not of interest. Moreover, the inclu-

sion of prior event history may attenuate estimates of

covariate effects compared with the marginal effects.

Examples of applications for this approach include analysis

of accumulated cost of medical care, and multiple infections

in patients with chronic granulomatous disease.
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The frailty model

The random effects approach, also called the frailty model,

introduces a random covariate into the model that induces

dependence among the recurrent event times.12 The idea is

that the random effect describes excess risk or frailty for

distinct individuals, taking into account unmeasured het-

erogeneity that cannot be explained by observed covariates

alone. The most commonly used frailty model is a shared

frailty model with random effects assumed to follow a

gamma distribution with mean equal to one and unknown

variance.6 The model assumes that the recurrent event

times are independent conditional on the covariates and

random effects. When there is heterogeneous susceptibility

to the risk of recurrent events, the frailty model can be

applied. For instance, when evaluating recurrent infections

at the point of catheter insertion in dialysis patients, the

study population can be considered as a mixture of individ-

uals with different hazards, but the characteristics for

differences between individuals are not captured by the

measured covariates. In such applications, frailty models

can be a possible choice.

Multi-state models

The simplest multi-state model (MSM) is defined for two

states: alive (a transient state) and dead (an absorbing

state).21 A special case of MSM occurs when an individual

moves from one state to another through time, and inter-

mediate states are identified. Such states may be considered

to be of the same type of recurrent events (Figure 2). A

change of state is called a transition (or an event) and is

central in this framework, which is fully characterized

through estimation of transition probabilities between

states and transition intensities that are defined as instant-

aneous hazards of progression to one state, conditional on

occupying another state.22 Both of them depend on the

process over time, the history up to time t. Graphically,

MSM are illustrated using diagrams with boxes (the states)

and arrows between the states (the transitions).15 In

Figure 2 we represent an MSM for k recurrent events. The

transition intensities (alk) can be modelled using a Cox

model for univariate time-to-event data,21 and an AG or

PWP for recurrent events.14 The most common application

of the multi-state approach is the illness-death model,

which could be applied, for instance, for a combination of

data from hospitalizations and death of heart failure pa-

tients because it allows incorporation of the multiple

hospitalizations and distinction between two clinical

events: death and hospitalization. Another example of ap-

plication with recurrent event data is in the evaluation of

factors on the risk of catheter loss in patients with chronic

renal failure, when the event is reversible and the interest

in on the estimation of transition probabilities.

Existing software

We provide syntax for fitting each model using SAS, Stata

and R software,23–25 highlighting major differences, par-

ticularly on required data structure and available results

(Appendix 1, 2 and 3, available as Supplementary data at

IJE online). The models for analysis of multivariate time-

to-event data are fitted using the PHREG procedure in

SAS/STAT software (1999–2001). The frailty model for

clustered data can be implemented using PROC

NLMIXED.26 A SAS macro, called PTRANSIT, is used to

fit MSM for recurrent events.14

In Stata the survival analysis commands include STSET

and STCOX. STSET is used to input information on the

survival times, censoring time and identification variables.

STCOX is used to fit the Cox model and its exten-

sions.12,27 Currently, there are no specific options to fit

MSM for recurrent event data in Stata.

The library survival is part of R statistical packages and

is used to fit the methods described here,6 except for the

MSM model. Different options on the coxph function are

considered to specify the approaches. MSM for recurrent

events is not currently available in R.

Application 1: Bladder cancer

We consider data from a study with 85 bladder cancer

patients designed to evaluate the effect of two treatment

arms (thiotepa or placebo) on tumour recurrence.5,6,16 All

patients entered the study after removal of superficial blad-

der tumours. The event of interest is recurrences of tu-

mours. The tumours detected during the study visits were

removed. Patients were censored at the time of loss to fol-

low-up or at the end of the study. Subjects were followed

for up to 64 months. Covariates include treatment group,

number of initial tumours (found at baseline) and size of

the largest initial tumour (in centimeters); 55% of the pa-

tients had at least one recurrence, resulting in 130 recur-

rences. Mean number of recurrences is 1.5, varying from 0

to 9. Among those with at least one recurrence, 81% had

Figure 2. Schematic for full multi-state model for recurrent events.
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at most 4 recurrences (mean number is 2.8). We truncated

the dataset after the fourth event due to the small number

of events in later strata.

Application 2: Acute lower respiratory tract infections

Data from a double-blinded randomized clinical trial with

1207 children followed for 1 year to evaluate the impact of

high doses of vitamin A on diarrhoea and acute lower re-

spiratory tract infections (ALRI) was used.17 Daily infor-

mation on respiratory rates was available and measured

twice for those children who reported cough. An episode

of ALRI was defined as cough plus a respiratory rate of 50

breaths per min or higher for children under 12 months of

age, and 40 breaths per min or higher for older children.17

Censoring occurred when children were lost to follow-up

or the study reached the end.

Only 16% of the children had at least one ALRI episode

during their follow-up period, resulting in 321 episodes.

Episodes of ALRI beyond the third occurrence were not

used because of the small number of times this occurred

and including them would make the model unstable.

Besides treatment group (vitamin A vs placebo), other

covariates are child’s gender and age at the beginning of

the study, and an indicator for the presence of a toilet in

the child’s house (a proxy for hygienic habits). Age was

categorized into two groups (0 if child’s age >12 months,

and 1 if age �12 months).

Results

Bladder cancer

There were 47 first bladder cancer recurrences, and 83 sub-

sequent recurrences. If one decides to fit the Cox model to

the time to the first event, it would exclude 63.8% of the

observed events.

Considering the first four events, we analysed 112 re-

currences. The results were similar to those obtained when

using all recurrences when possible (data not shown).

We present the results for PWP-TT and PWP-GT models

with common effects.

We present the hazard ratios (HR) or rate ratios (RR)

and corresponding 95% confidence intervals for the risk

factors for bladder cancer recurrences (Table 1). Both AG

and marginal means models provide same point estimates

because we did not include time-dependent variables

related to the event history in the AG model. Even though

they have the same numerical values, they model different

ratios, i.e. the AG models intensity function whereas the

marginal means model models rate of events. In these ana-

lyses we did not incorporate time-varying covariates in the

AG model to deal with dependence in order to make com-

parison with other models. One noticeable difference be-

tween AG and marginal means models, however, is in their

confidence intervals, due to their distinct corresponding

procedures for estimating variability of the estimates. The

frailty model, which includes a random effect to account

for within subject correlation, is also fitted to this data.

Results from the AG model point out that patients in

the thiotepa group have a reduction of 37% on the risk of

recurrence, even though of only borderline significance

when adjusting for number and size of initial tumours

(HR¼ 0.63; 95% CI: 0.40, 0.99). Furthermore, the num-

ber of initial tumours (HR¼ 1.19; 95% CI: 1.05, 1.35) is

revealed to be an important prognostic factor for recur-

rence. Size of largest initial tumour was not significantly

associated to the recurrences after adjusting for the number

of initial tumours and treatment by any of the five models.

Conditional on the unmeasured heterogeneity and covari-

ates, the frailty model indicates that each additional tu-

mour at baseline is associated with a 26% increase in the

recurrence risk (HR¼1.26; 95% CI: 1.05, 1.51).

Estimates from both PWP models are computed based

on restricted risk sets; specifically, the risk set only involves

those with the same number of previous events.

For MSM we considered only one type of transition,

which means that the individual returns to the initial

Table 1. Results of five analytical approaches for recurrent events: hazard and rate ratios of tumour recurrences in bladder can-

cer patients

Effects AG Means model PWP-TT PWP-GT Frailty model

HR (95% CI) RR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Treatment

(Ref: placebo)

0.63 0.63 0.72 0.76 0.54

(0.40, 0.99) (0.38, 1.04) (0.48, 1.05) (0.51, 1.15) (0.28, 1.03)

Number of tumours 1.19 1.19 1.12 1.17 1.26

(1.05, 1.35) (1.05, 1.34) (1.02, 1.24) (1.06, 1.29) (1.05, 1.51)

Size of largest tumour 0.96 0.96 0.99 1.01 0.97

(0.83,1.11) (0.83, 1.11) (0.88, 1.12) (0.89, 1.14) (0.78, 1.22)

HR, hazard ratio; RR, rate ratio; CI, confidence interval; AG, Andersen-Gill model; PWP-TT, Prentice-Williams-Peterson Total-Time model; PWP-GT,

Prentice-Williams-Peterson Gap-Time model.
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condition just after the occurrence of the event, that is, the

event is immediately reversible.13 In this case, we are inter-

ested in the transition from healthy to disease status,

assuming the probability of recovery is 1. Figure 3 shows

the predicted transition probabilities between bladder tu-

mour recurrences considering the AG model for four types

of patients. Subjects 1 and 2 were in the placebo group,

whereas subjects 3 and 4 were in the thiotepa group.

Subjects 1 and 3 had both only 1 tumour at baseline of size

1 cm. Subjects 2 and 4 had 7 tumours at baseline and 4 cm

was the size of their largest initial tumour. Subject 3 is the

one with smallest probabilities of going from healthy to

disease status (tumour recurrences) during the follow-up

period. The worst prognostic, i.e. highest probability of

going from healthy to disease status, is for subject 2.

Since each of the models has distinct assumptions, their

results should not be directly compared. The choice among

them depends on the scientific question under investigation.

ALRI

The maximum number of ALRI episodes for a child is sev-

en, with 98% of the children having at most three epi-

sodes. According to all models, younger children (�12

months) are more likely to have recurrent episodes of

ALRI than older children (e.g. HR¼ 3.62; 95% CI: 2.76,

4.74, PWP-TT model) (Table 2). Another important factor

is the presence of a toilet at home, which reduces by about

40% the risk of ALRI (e.g. HR¼ 0.60; 95% CI: 0.46,

0.77, PWP-TT model).

The variance of the random effect from the frailty

model is estimated to be 2.51 (P <0.001), corresponding

to a within-individual correlation of 55.7%, given by the

Kendall’s tau statistic. It is important to emphasize that the

frailty model estimates the relative risk within children.

The predicted transition probabilities through MSM are

presented in Figure 4 and were estimated using the AG

model. Subjects 1 and 2 were both girls and in the vitamin

A group. They differ regarding the age group and presence

of a toilet at home. Subject 1 is younger (�12 months) and

lives in a house without toilet facilities, whereas subject 2

is older (>12 months) and has a toilet at her house. Note

that the predicted probabilities for transition from healthy

to ALRI state are much larger for subject 1 compared with

subject 2. Assuming that there is unequal risk for the differ-

ent transitions, the analysis can be stratified by transition

(event) using PWP-TT model (data not shown).

Since we have the duration of ALRI episodes, we con-

sidered more than one transition, which is applicable when

the recovery is not immediate and the individual remains

sick for a period of time. We are interested in both transi-

tions: healthy to disease, and disease to healthy. Thus, we

estimated the probability of recovery. Note that there is no

difference on the effects for treatment and gender on the

two transitions (Table 3). Results for transition healthy-

ALRI are similar as shown previously by the AG model.

However, the MSM allows us to additionally quantify the

Figure 3. Predicted transition probabilities for four patients using the AG multi-state model fitted to bladder study.

International Journal of Epidemiology, 2015, Vol. 44, No. 1 329



magnitude of the effect of the covariates on the transition

ALRI-healthy. Younger children present a reduced rate of

recovering compared with older children (HR¼ 0.38; 95%

CI: 0.28, 0.51), whereas children with a toilet facility at

home have a higher rate (HR¼ 2.26; 95% CI: 1.67, 3.06).

Note that, due to potential selection bias, caution must be

exercised to interpret these estimates. Estimates for the se-

cond transition (ALRI ! healthy) were for diseased chil-

dren, not for the overall population.

Discussion

Given the relative lack of agreement regarding appropriate

methods for analysing recurrences using survival analysis,

we described the relevant methodological issues and illus-

trated how to fit and interpret results for different

approaches. Analysis based only on the first event time

cannot be used to examine the effect of the risk factors on

the number of recurrences over time.1,28 Many researchers

continue to use logistic regression for such analysis, despite

known limitations and the increasing availability of analyt-

ical approaches that handle recurrent events.10,29 In cohort

studies, there is little justification for fitting logistic regres-

sion once there are other available approaches for estimat-

ing risk.10 The count data models, such as Poisson and

negative binomial, are the simplest ways to analyse re-

peated events. However, they consider the total number of

events per a fixed period of time, ignoring the time

Table 2. Results of five analytical approaches for recurrent events: hazard and rate ratios of respiratory infections in small

children in Brazil

Effects AG Means model PWP-TT PWP-GT Frailty model

HR (95% CI) RR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Treatment

(Ref: placebo)

0.94 0.94 0.93 0.91 0.95

(0.73, 1.20) (0.70, 1.26) (0.73, 1.19) (0.72, 1.16) (0.69, 1.31)

Gender

(Ref: girls)

1.10 1.10 1.10 1.09 1.13

(0.86, 1.41) (0.82, 1.48) (0.86, 1.41) (0.86, 1.38) (0.82, 1.57)

Age

(Ref: >12 mo)

5.17 5.17 3.62 3.76 6.50

(4.00, 6.67) (3.82, 7.00) (2.76, 4.74) (2.90, 4.88) (4.57, 9.23)

Toilet at home

(Ref: no)

0.54 0.54 0.60 0.60 0.52

(0.42, 0.70) (0.40, 0.74) (0.47, 0.77) (0.47, 0.76) (0.37, 0.73)

HR, hazard ratio; RR, rate ratio; CI, confidence interval; AG, Andersen-Gill model; PWP-TT, Prentice-Williams-Peterson Total-Time model; PWP-GT,

Prentice-Williams-Peterson Gap-Time model; mo, months.

Figure 4. Predicted transition probabilities for two girls using the AG multi-state model fitted to ALRI study.
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between repeated occurrences. In addition, it is not pos-

sible to identify whether the effect of exposures changes

the rate of occurrence across the time period.1 Thus, sur-

vival analysis is preferred when follow-up times are vari-

able among participants, or when there are time-varying

covariates or time-varying effects.10

Even though we focus on methods for analysis of

ordered failure times, many studies present sources of cor-

related unordered failure times. For example, times to an

event of interest collected on family members are

unordered and correlated because they share genetic and

environmental factors; similarly, times to the same event

type in two organs are pairwise correlated. The methods

described here are also useful for analysis of such data,

considering some adjustments.

Several approaches have been proposed to account for

intra-subject correlation that rises from multiple events

settings in survival analysis. The biological process of the

disease is fundamental when choosing the model for the

time to recurrent events. For instance, it is possible that

after experiencing the first infection, the risk of the next in-

fection may increase. If it is reasonable to assume that the

risk of recurrent events remained constant regardless of the

number of previous events, then the AG model is recom-

mended.6 The AG model assumes that the time increments

between events are conditionally uncorrelated given the

covariates. However, omission of an important covariate

could induce dependence. In such case, the standard errors

would be underestimated, causing inflation of type I error.

A possible remedy would be to fit an AG model with a

time-dependent covariate for the number of events.

Advantages of an AG model include the ability to accom-

modate time-varying covariates and discontinuous inter-

vals of risk.15

If it is reasonable to assume that the occurrence of the

first event increases the likelihood of a recurrence, then

PWP is recommended. The PWP models (TT or GT) are

also indicated when there is interest in estimating effects

for each event separately. The PWP models assume that

the subjects can only be at risk for a given event after

he/she experienced the previous event. A limitation for the

use of PWP models is that the risk sets for the later events

get quite small, making the estimates unstable. Therefore,

we usually have to truncate the data. On the other hand,

when the investigators are interested in modelling the ex-

pected number of events or the rate of event occurrence,

conditional on covariates, the means/rates marginal model

should be used. These models are also useful in many ap-

plications where there are multiple types of events and it is

of interest to simultaneously describe marginal aspects of

them. Incorporation of time-varying covariates can also

lead to different interpretations depending on the adopted

approach.

The frailty models are indicated when a subject-specific

random effect can explain the unmeasured heterogeneity

that cannot be explained by covariates alone, which leads

to a person-specific interpretation of the estimates in a

similar way as that for mixed models for analysis of longi-

tudinal data. A debate about using frailty models is regard-

ing the amount of information, such as number of events,

number of subjects and the distribution of events/subjects,

required to produce stable estimates. When random effects

are large, a smaller number of events seems to be adequate,

otherwise a larger number of events would be necessary.6

When using multi-state models (MSM), the interest lies in

the estimation of progression rates, assessing the effects of

individual risk factors.22 Different MSM (Markov or Semi-

Markov, for instance) can be fitted depending on the

assumptions about the dependence of the transition rates.

Due to lack of software developments for fitting MSM,

this approach has been rarely applied to analysis of recur-

rent event data to date.14,15

We discussed known approaches under independent

censoring assumption for analysis of recurrent event data.

Methods dealing with dependent censoring have been

proposed,30,31 but they have not been incorporated into

major software.

We attempted to illustrate methodological issues

through analyses of recurrence events in a cancer study

and in a study related to an infectious disease, describ-

ing interpretation of results obtained from different

approaches. All models allow estimation of overall ef-

fects and most of them are easily approached using

standard statistical software. Fit of frailty models and

MSM, however, is less accessible. Even though main

conclusions did not change in our analyses, it is

Table 3. Estimated effects for two types of transition in multi-

state models for recurrent respiratory infections in small chil-

dren in Brazil

Effects Transition

healthy! ALRI

Transition

ALRI! healthy

HR (95% CI) HR (95% CI)

Treatment

(Ref: placebo)

0.94

(0.74, 1.19)

0.96

(0.71, 1.29)

Gender

(Ref: girls)

1.10

(0.87, 1.39)

1.00

(0.75, 1.34)

Age

(Ref: > 12 mo)

5.17

(4.08, 6.56)

0.38

(0.28, 0.51)

Toilet at home (Ref: no) 0.54

(0.43, 0.69)

2.26

(1.67, 3.06)

HR, hazard ratio; CI, confidence interval; mo, months.
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important to highlight the distinct interpretations for

parameter estimates resulting from the models, particu-

larly if these effects are estimated marginally or condi-

tional on covariates and/or random effects. In this paper

we fitted all models for both applications in order to il-

lustrate their use, software implementation and inter-

pretation of estimates in scenarios with different data

structures. We truncated our datasets to have the same

number of events for all approaches to illustrate the

methods and to allow a more direct comparison be-

tween the models. Nevertheless, we were also able to

use full data for analysis using the AG model, marginal

rates model and frailty model. We did both analyses

(with full and truncated data) using the aforementioned

approaches. The results from the analysis with full data

were not included in the manuscript for simplicity.

In summary, the choice of the approach for analysis

of recurrent event data will be determined by many fac-

tors, including: number of the events; relationship be-

tween subsequent events; effects varying or not across

recurrences; biological process; and dependence struc-

ture. Usually the stratified models, as PWP (total or gap

times) or multi-state models, are used when there are

few recurrent events per subject and the risk of recur-

rence varies between recurrences. On the other hand,

models that account for correlation between recurrent

events using robust covariance matrix, time-varying

covariates or frailties (marginal means/rates, AG and

frailties models) are indicated for frequent events with

constant hazard between recurrences. Many statistical

challenges arise when performing analyses of repeated

time-to-event data and the researcher should be careful

to address them adequately.

We recommend the following basic steps for analy-

sing recurrent time-to-event data: (i) select the appropri-

ate statistical model for the data based on the

aforementioned factors and the scientific question of

interest; (ii) organize the data structure suitable for the

selected model; (iii) use the proper commands and op-

tions in the chosen statistical software to fit the model.

In this paper, we briefly described the main characteris-

tics of models for analysing recurrent time-to-event data

and presented information on how to prepare the data

(Appendix 1, available as Supplementary data at IJE on-

line) and to specify the commands in three statistical

software (Appendix 2, available as Supplementary data

at IJE online).

A recurrent events model can help to gain insights into

the disease process. Hence, it is very important to consider

the use of as much data as possible and to conduct analysis

that can enhance a comprehensive understanding of the

role of the risk factors in the disease process.

Supplementary Data

Supplementary data are available at IJE online.
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