1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	000

SAS exercises

Henrik Ravn

Novo Nordisk

DSBS Course Survival Analysis in Clinical Trials – Part 2 January 2018

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
●000	0000	000	000	000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

PBC3 data – description

PBC3 was a multi-centre randomized clinical trial conducted in six European hospitals. Between 1 Jan. 1983 and 1 Jan. 1987, 349 patients with the liver disease primary biliary cirrhosis (PBC) were randomized to either treatment with Cyclosporin A (CyA, 176 patients) or placebo (173 patients). The purpose of the trial was to study the effect of treatment on the survival time. However, during the course of the trial an increased use of liver transplantation for patients with this disease made the investigators redefine the main response variable to be time to "failure of medical treatment" defined as either death or liver transplantation. Patients were then followed from randomization until treatment failure, drop-out or 1 Jan, 1989; 61 patients died (CyA: 30, placebo: 31), another 29 were transplanted (CyA: 14, placebo: 15) and 4 patients were lost to follow-up before 1 Jan. 1989. At entry a number of clinical, biochemical and histological variables, including serum bilirubin, serum albumin, sex, age were recorded.

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	000

PBC3 data - list of variables

ptno	patient identification
tment	treatment (0: placebo, 1: CyA)
sex	(1: males, 0: females)
age	years
alb	albumin (g/L)
bili	bilirubin (micromoles/L)
years	observation time in years
status	status at exit (0: censored, 1: liver transpl, 2 : dead)
biligroup	Bilirubin categorised by quintiles

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
00●0	0000	000	000	000
DDCO		1.1		

PBC3 – two-state model

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
000●	0000	000	000	000
DDCa	1. A. C.	с. с. с		

PBC3 exercise – goodness of fit

- I Fit a Cox model with treatment (tment) as the only covariate
- Add (to the previous model) the quantitative covariates bilirubin and albumin (bili and alb). What happened to the effect of treatment?
- S Check proportional and log-linear assumptions for the three covariates in the previous model (use ASSESS statement)
- Try to use logarithm of bilirubin instead. What happened to the effect of treatment?

1 PBC3 0000	2 Rats ●000	3 Нуро 000	5 Bladder 000	5 rhDNase 000
Rats data	 recurrent 	events with	no gaps and	no terminal
event				

Data from Cook and Lawless 2007 Springer-book "The Statistical Analysis of Recurrent Events" ("orginally" from Gail et al., 1980, Biometrics). 76 female rats were exposed to a carcinogen and then given retinyl acetate to prevent cancer for 60 days. 48 rats, still tumor-free, were randomized to either continued treatment (23) or control (25) and followed for another 122 days. They were examined for tumors twice weekly and times of tumors were noted. The data set includes the variables:

id	rat id number
start	start time
stop	stop time
status	tumor (=1) or not (=0) at stop time
num	record number for each rat
trt	treatment indicator

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	000
Pate n	aulti stata ma	dol		

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	00●0	000	000	000
Rats exe	rcise			

Intensity model

- Fit an intensity-based model using only treatment as a covariate. What is the interpretation of the hazard ratio for the treatment effect?
- Fit a stratified intensity-based model stratified by number of events (PWP-model) to estimate the treatment effect. What is the interpretation of the hazard ratio for the treatment effect?
- Fit an (un-stratified) intensity-based model using the number of previous events as a quantitative covariate
- Fit an (un-stratified) intensity-based model using the number of previous events as a categorical covariate. How do all these models differs?

Frailty model

- Fit a gamma-frailty model and estimate the treatment effect. What is the interpretation of the hazard ratio for the treatment effect?
- 2 Does frailty seem to be present?

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	000●	000	000	000
-				

Rats exercise – continued

Marginal model

- Plot the estimated (non-parametrically) cumulative marginal mean function (CMF) for each treatment
- Ocmpare the estimates SAS calculates for CUMHAZ and CMF in the BASELINE statement (maybe the PROC PHREG manual is needed here)
- S Fit a model for the marginal mean function to estimate the treatment effect using robust SE. How do you interpret the exponentiated regression coefficient?

1 PBC3 0000	2 Rats 0000	3 Hypo ●00		5 Bladder 000		5 rhDNase 000
Нуро –	hypoglycaemic	recurrent	events	with	dropout	as
termina	levent					

RCT data on time to treatment emergent hypoglycaemic event (recurrent) in a 1-year RCT (N=559) of active drug vs placebo. A treatment emergent hypoglycaemic event is defined as an event that has onset date on or after the first day of randomised treatment and no later than 14 days after the last day of randomised treatment. The event process is interrupted by dropout (drug discontinuation) before week 52.

id	Subject id
enum	record number per id
start	Start time in weeks
stop	Stop time in weeks
status	Status at stop time: 0 = Complete on drug 1 = hypo event 2 = dropout
drug	0 = Placebo 1 = Active

1 PBC3	2 Rats	3 Hypo	5 Bladder	5 rhDNase
0000	0000	⊙●⊙	000	000
1.1	The second second	1.1		

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	00●	000	000

Hypo exercise

- Estimate non-parametrically the cumulative marginal mean function for the recurrent hypos for each treatment group by censoring for dropout. What does it estimate?
- Estimate non-parametrically the cumulative marginal mean function taking into account the terminal event (dropout) for each treatment group using PHREG. What does it estimate?
- Sit an intensity-based model for hypo events, by censoring for dropout with drug as covariate. What is the interpretation of the hazard ratio?
- Fit a model for the marginal mean (E(N(t))) for hypo events taking into account the terminal event (dropout) with drug as covariate.

1 PBC3 0000		2 R 000	ats DO	3 Hypo 000		5 Bladd ●00	er		5 rhDNase 000
Bladder	data	-	recurrent	events	with	death	as	termina	al
event									

Trial conducted by the Veterans Administration Cooperative Urological Research Group (Byar, 1980) - famous text book example. 118 patients with stage I bladder cancer randomized to pyridoxine (32), thiotepa (38), or placebo (48) followed for the occurrence of superficial bladder tumors. Here we only look at placebo and thiotepa with death as a terminating event:

subject	person-id
enum	record no per subject
start	start time in months
stop	stop time in months
status	0= alive, $1=$ new tumor, $2=$ dead, $3=$ new tumor and dead
trt	0 = placebo, 1 = thiotepa
number	no. of tumors at time 0
size	largest tumor at time 0

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	⊙●⊙	000
D 1 11	1 A A			

Bladder – multi-state model

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	⊙⊙●	000
Bladder e	exercise			

- Fit an intensity-based model for the recurrent tumors, by censoring for death. What is the interpretation of the hazard ratio?
- Fit a Cox-model using death as an extra event in the event process. What is the interpretation of the hazard ratio?

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	000

rhDNase - recurrent events with gaps

This is a dataset reported by Fuchs et al., 1994, N Eng J Med for a double-blind randomized multicenter clinical trial designed to evaluate the effect of rhDNase, a recombinant deoxyribonuclease I enzyme, versus placebo on the occurrence of respiratory exacerbations among patients with cystic fibrosis. Data on the occurrence and resolution of all exacerbations were recorded for 645 patients with cystic fibrosis randomized to rhDNase (321) or placebo (324) followed from randomization and about 169 days. The data set includes the variables:

id	subject id
trt	1 = rhDNase, 0 = placebo
fev, fev2	baseline measurements
start	start time
stop	stop time
status	exacerbation $(=1)$ or not $(=0)$ at stop time
etype	1 if "at risk", 2 if "under treatment" $=$ not at risk for an exacerbation
enum	record no.
enum1	gap time no.
enum2	treatment period number

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	000

rhDNase – multi-state model

1 PBC3	2 Rats	3 Нуро	5 Bladder	5 rhDNase
0000	0000	000	000	00●
rhDNase	exercise			

- Estimate non-parametrically the cumulative intensity for events of exacerbations for each treatment by removing time not at risk due to treatment of exacerbations (etype=2)
- Fit an intensity-based Cox model for the exacerbations, by removing time not at risk due to treatment of exacerbations (etype=2) with randomised treatment (trt) and baseline FEV (fev) as covariates. What is the interpretation of the hazard ratio?
- Sestimate non-parametrically the cumulative marginal mean function for events of exacerbations for each treatment, *without* any adjustment for days not at risk (etype=2), so-called cycles of exacerbations. What does this estimate?
- Fit a marginal models for cycles of exacerbations with fev and trt as covariates. What is the interpretation of the "hazard ratio" in the SAS-output?