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Introduction to Competing Risks

Survival data

Survival data = single outcome.

time from origin (time zero) to event (death)

right censoring, delayed entry

basic quantity is the
intensity
= rate
= hazard function
= λ(t) ≈ Prob(die before t + dt | alive at t)/dt
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Introduction to Competing Risks

Survival data

The hazard, λ(t), provides a local (in time) description of the
development.

Models for λ(t)

Cox regression

Poisson regression

The survival function

S(t) = Prob(alive at time t)

describes the cumulative development over time.
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Introduction to Competing Risks

Two-state model for survival data

Alive Dead
-

λ(t)0 1

λ(t) ≈ Prob(state 1 time t + dt | state 0 time t)/dt

S(t) = Prob(state 0 time t)

F (t) = 1− S(t) = Prob(state 1 time t) is the cumulative

probability (”risk”) of death over the interval from 0 to t
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Introduction to Competing Risks

Relation between rates and risks

We have the relation

F (t) = 1− exp(−
∫ t

0
λ(u)du).

This means that whenever we have a (Cox/Poisson/...) model for
the rate, λ(t), we also have a model for the risk: F (t) = 1− S(t).

A one-to-one correspondence between hazard and survival (and
risk).

In particular, if the rate increases/decreases with a covariate, X ,
then also the risk increases/decreases with X .
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Competing risks

Alive

Dead, cause 1

Dead, cause k
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Introduction to Competing Risks

Competing risks

Cause-specific intensities

λ1(t) ≈ Prob(state 1 time t + dt | state 0 time t)/dt

λ2(t) ≈ Prob(state 2 time t + dt | state 0 time t)/dt
...

λk(t) ≈ Prob(state k time t + dt | state 0 time t)/dt

State occupation probabilities include the overall survival function:

S(t) = P(alive time t).

and the cumulative incidences (”sub-distribution function”)
j = 1, . . . , k :

Fj(t) = P(dead from cause j before time t)
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Introduction to Competing Risks

Recap: Population and sample

We are used to considering our data as a sample from some
(target) population, and the parameters refer to this population.

That is no different in survival analysis, however, it is important to
realize that the target population is a complete population, i.e.,
without censoring.

Our ambition in survival analysis is therefore to draw inference on
parameters like the survival function S(t) or the hazard function
λ(t) from a potentially completely observed population based on
incomplete (censored) data.

This is quite ambitious and requires certain assumptions.
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Introduction to Competing Risks

Target population; censoring

For this ambition to be feasible:

1 the complete population should be well-defined

2 censoring should not leave us with a biased sample

Requirement 1 basically tells that the event under study should be
able to happen for every one in the population.

A complete population without censoring is not well-defined if, e.g.
the event of interest is AE and death is censoring; the event under
study should be able to happen for every one in the uncensored
population.

We must acknowledge that individuals may die without an AE and
inference for AE risks and rates should be made ”in the presence of
the competing risk of dying”.

9 / 37



Introduction to Competing Risks

Recap: Kaplan-Meier and Nelson-Aalen

Censored (independently) sample of times 0 < t1 < t2 < . . . with
d(t1), d(t2), . . . being the observed numbers of failures.

The Kaplan-Meier (KM) estimator for the survival function

Ŝ(t) =
∏
tj≤t

(
1−

d(tj)

R(tj)

)
.

The estimator for the risk F (t), is ”1–KM”.

The Nelson-Aalen estimator for the cumulative hazard

Λ̂(t) =
∑
tj≤t

d(tj)

R(tj)
.
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Introduction to Competing Risks

LEADER – Death from any cause

1–KM was used to estimate risk functions F (t) = 1− S(t) for the
treatment groups
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LEADER – CV death and other causes

Alive

Other causes

Q
Q
Q
Q
Q
Qs

CV Death
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λ2(t)
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Introduction to Competing Risks

LEADER – Death from cardiovascular causes

1–KM used to estimate risk functions by censoring for other causes
of death
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Introduction to Competing Risks

Censor the competing cause

Wish to estimate parameters about CV deaths (for the risk or rate)
by censoring for other causes of death. Recall that, for this to be
feasible:

1 The complete population (i.e., without censoring) should be
well-defined

2 Censoring should not leave us with a biased sample

Requirement 2 is still an issue to be debated, however, requirement
1 will be violated when we censor for other causes:

This is because we attempt to make inference for a potentially
completely observed population where other causes of death do not
exists. Such a population is hypothetical.
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Introduction to Competing Risks

In the competing risks model (2 causes of death)

Cause-specific hazards j = 1, 2 (“transition intensities”):

λj(t) ≈ P(state j time t + dt | state 0 time t)/dt.

State occupation probabilities include the overall survival function:

S(t) = P(alive time t) = exp[−(Λ1(t) + Λ2(t))].

and the cumulative incidences (”sub-distribution function”)
j = 1, 2:

Fj(t) = P(dead from cause j before time t) =

∫ t

0
S(u)λj(u)du

-t t t t
0 u u + du t

time

NB: S(t) + F1(t) + F2(t) = 1 for all t.
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Introduction to Competing Risks

Rates and risks

Note that the risk for cause 1 depends on the rates for both causes
1 and 2.

For the two-state model for (overall) survival, hazard function λ
and failure function F contain equivalent information and one may
be obtained from the other.

This one-to-one correspondence is lost for competing risks

Both of the cause-specific hazards, λ1, λ2, are needed when
computing each of the cumulative incidences, F1,F2.
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Introduction to Competing Risks

Using the Kaplan-Meier estimator on a single cause

We have the relation:

F1(t) = P(dead from cause 1 before time t) =

∫ t

0
S(u)λ1(u)du.

When λ2(t) = 0, i.e. when the competing event is not present,
then

F 0
1 (t) = 1− exp(−

∫ t

0
λ1(u)du) = 1− S1(t), say.

That is, “1–KM for cause 1”, 1− Ŝ1(t), estimates

P(dead from cause 1 before time t) IF λ2(t) = 0

That is, if the competing risk does not exist.
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The Nelson-Aalen estimator with competing risks

The cumulative cause-specific hazard can be estimated using the
Nelson-Aalen estimator using only failures from the relevant cause,
e.g., cause 1:

Λ1(t) =

∫ t

0
λ1(u)du

may be estimated by

Λ̂1(t) =
∑
tj≤t

d(tj)I (cause = 1)

R(tj)
.

This is an increasing step function with steps at each observed
time of failure from cause 1.
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Aalen-Johansen estimator

Non-parametric estimation of risks/probabilities.

The overall survival function S(t) can be estimated by the
Kaplan-Meier estimator, Ŝ(t), using all failures (LEADER).

The cumulative incidences: F1(t) and F2(t) may be estimated by
plugging-in estimates for S(t), Λ1(t) and Λ2(t). E.g., for cause 1:

F̂1(t) =
∑
tj≤t

Ŝ(tj−1)
d(tj)I (cause = 1)

R(tj)
.

This is often called the Aalen-Johansen estimator.

LEADER?
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Aalen-Johansen estimator

F̂1(t) =
∑
tj≤t

Ŝ(tj−1)
d(tj)I (cause = 1)

R(tj)

=
∑
tj≤t

Ŝ(tj−1)(Λ̂1(tj−1)− Λ̂1(tj))

=
∑

KM · (increments in cause-specific N-Aa)
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Introduction to Competing Risks

1-Kaplan-Meier vs. Aalen-Johansen

We always have:

F1(t) ≤ F 0
1 (t) = 1− S1(t).

The risk is over-estimated by using 1–KM instead of
Aalen-Johansen.

The degree of bias depends on the magnitude of the competing
risk (cause 2): if there are no competing risks (λ2(t) = 0) then
they are identical, and the difference between the two increases
with λ2(t).

At best, the simple 1–KM estimator can be considered an
approximation to the cumulative incidence that may be used if the
competing risk is small. However, the best advice is never to use
1-KM in the presence of competing risks.
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Kaplan-Meier vs. Nelson-Aalen

Why does Nelson-Aalen work with competing risks when
Kaplan-Meier doesn’t?

This has to do with the fact that the Nelson-Aalen estimates the
(cumulative) rate, and rates describe the “local” (in time) behavior
of the failure process for a given cause. “Therefore”, when
assessing the local strength of cause 1, then cause 2 need not be
taken into account.

Risks, however, cumulate over (long) time periods and the impact
of cause 2 must be accounted for when assessing the strength of
cause 1.

More on this later
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Inference for cause-specific hazards

As a consequence, all standard hazard-based models for survival
data apply when analyzing cause-specific hazards

non-parametric: estimate Λj(t) =
∫ t
0 λj(u)du, j = 1, 2 by

Nelson-Aalen estimator, compare using, e.g. logrank tests

Cox regression

Poisson regression

More on this later today.
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SAS/STAT 13.2

Aalen-Johansen estimator using macro %CIF (SAS macro library).
The macro requires SAS/IML.

% CIF ( DATA =dropout , TIME =week , STATUS =state ,

EVENT =1, CENSORED =0, GROUP =drug);

The estimates are saved in a data set.

The %CIF macro has been included in PROC LIFETEST in
SAS/STAT 14.2.
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PROC LIFETEST – SAS/STAT 14.2

Aalen-Johansen estimator

PROC LIFETEST DATA =dropout PLOTS = CIF ;

TIME week*state (0) / FAILCODE =1;

STRATA drug;

RUN ;

Make CIF for all three causes:

PROC LIFETEST DATA =dropout PLOTS = CIF ;

TIME week*state (0) / FAILCODE ;

STRATA drug;

RUN ;
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PROC PHREG – SAS/STAT 13.2

PROC PHREG DATA =dropout PLOTS ( OVERLAY = ROW )= CIF ;

MODEL week*state (0)=/ eventcode =1;

STRATA drug;

RUN ;

NB
PROC PHREG does not use the Aalen-Johansen estimator but the
Fine-Gray model for cumulative incidence regression to estimate
CIF.
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PROC PHREG – SAS/STAT 13.2

For the Cox model from standard survival analysis we have

log(− log(S(t | X ))) = log(Λ0(t)) + β′X .

The sub-distribution version for competing risks is

log(− log(1− Fj(t | X ))) = log(Λ̃0j(t)) + β̃′X .

PROC PHREG uses an estimator for Λ̃0j(t) which involves Inverse
Probability of Censoring Weights (IPCW) for subjects who have
experienced a competing event – more on this later.
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Exercise: Drug discontinuations as competing risks

Data on time to drug discontinuation for different reasons in a
1-year RCT (N=559) of active drug vs placebo.

week Time in study in weeks (!)

state 0 = Complete on drug (n=406)
1 = Adverse event (n=42)
2 = Withdrew consent (n=62)
3 = Other (n=49)

drug 0 = Placebo (n=188)
1 = Active (n=371)
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Drug discontinuations – competing risks

On drug

Adverse Event

Withdrew Consent

Other
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λ2(t)

λ3(t)
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Example: Drug discontinuations as competing risks

Data on time to drug discontinuation for different reasons in a
1-year RCT (N=559) of active drug vs placebo.

week Time in study in weeks (!)

state 0 = Complete on drug (n=406)
1 = Adverse event (n=42)
2 = Withdrew consent (n=62)
3 = Other (n=49)

drug 0 = Placebo (n=188)
1 = Active (n=371)
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Example: Drug discontinuations as competing risks

On drug

Adverse Event

Withdrew Consent

Other
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λ1(t)

λ2(t)

λ3(t)
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Overall: 1-KM
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Placebo: 1-KM
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Placebo: CIF
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Placebo: Stacked 1-KM
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Placebo: Stacked CIF
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Competing risks

In studies of all-cause mortality, risks (probabilities,
cumulative incidences) can be computed from rates (hazards)
and vice versa - in other words the two functions contain
equivalent information
In studies of events which will not eventually happen for every
one in the population, this is no longer the case and death
(and maybe other events) are competing risks which need to
be addressed
In such cases, the risk of a given cause depends on the rates
for all competing causes
Therefore, using ‘1-Kaplan-Meier for a single cause’ as a risk
estimator is (upward) biased
The magnitude of the bias depends on the frequency of the
competing events
A rather simple, unbiased estimator for the risk exists - the
”Aalen-Johansen” estimator 37 / 37
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