
Writing grid Code

Paul Murrell

June 23, 2008

The grid system contains a degree of complexity in order to allow things like editing graph-
ical objects, “packing” graphical objects, and so on. This means that many of the predefined
Grid graphics functions are relatively complicated1.

One design aim of grid is to allow users to create simple graphics simply and not to force
them to use complicated concepts or write complicated code unless they actually need to.
Along similar lines, it is intended that people should be able to prototype even complex
graphics very simply and then refine the implementation into a more sophisticated form if
necessary.

With the predefined graphics functions being fully-developed and complicated implementa-
tions, there is a lack of examples of simple, prototype code. Furthermore, given that the
aim is to allow a range of ways to produce the same graphical output, there is a need for
examples which demonstrate the various stages, from simple to complex, that a piece of
grid code can go through.

This document describes the construction of a scatterplot object, like that shown below,
going from the simplest, prototype implementation to the most complex and sophisticated.
It demonstrates that if you only want simple graphics output then you can do it pretty
simply and quickly. It also demonstrates how to write functions that allow your graphics to
be used by other people. Finally, it demonstrates how to make your graphics fully interactive
(or at least as interactive as Grid will let you make it).

This document should be read after the grid Users’ Guide. Here we are assuming that the
reader has an understanding of viewports, layouts, and units. For the later sections of the
document, it will also be helpful to have an understanding of R’s S3 object system.

Procedural grid

The simplest way to produce graphical output in Grid is just like producing standard R
graphical output. You simply issue a series of graphics commands and each command adds
more ink to the plot. The purpose of the commands is simply to produce graphics output;
in particular, we are not concerned with any values returned by the plotting functions. I
will call this procedural graphics.

1Although there are exceptions; some functions, such as grid.show.viewport, are purely for producing
illustrative diagrams and remain simple and procedural.

1

In order to draw a simple scatterplot, we can issue a series of commands which draw the
various components of the plot.

Here are some random data to plot.

> x <- runif(10)

> y <- runif(10)

The first step in creating the plot involves defining a “data” region. This is a region which
has sensible scales on the axes for plotting the data and margins around the outside for the
axes to fit in, with a space for a title at the top.

> data.vp <- viewport(x = unit(5, "lines"), y = unit(4,

+ "lines"), width = unit(1, "npc") - unit(7,

+ "lines"), height = unit(1, "npc") - unit(7,

+ "lines"), just = c("left", "bottom"), xscale = range(x) +

+ c(-0.05, 0.05) * diff(range(x)), yscale = range(y) +

+ c(-0.05, 0.05) * diff(range(y)))

Now we create the data region and draw the components of the plot relative to it: points,
axes, labels, and a title.

> pushViewport(data.vp)

> grid.points(x, y)

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.text("x axis", y = unit(-3, "lines"), gp = gpar(fontsize = 14))

> grid.text("y axis", x = unit(-4, "lines"), gp = gpar(fontsize = 14),

+ rot = 90)

> grid.text("A Simple Plot", y = unit(1, "npc") +

+ unit(1.5, "lines"), gp = gpar(fontsize = 16))

> popViewport()

2

●

●

●

●

●

●

●

●
●

●

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x axis

y
ax

is

A Simple Plot

Facilitating Annotation

Issuing a series of commands to produce a plot, like in the previous section, allows the user
to have a great deal of flexibility. It is always possible to recreate viewports in order to add
further annotations. For example, the following code recreates the data region in order to
place the date at the bottom right corner.

> pushViewport(data.vp)

> grid.text(date(), x = unit(1, "npc"), y = 0, just = c("right",

+ "bottom"), gp = gpar(col = "grey"))

> popViewport()

3

●

●

●

●

●

●

●

●
●

●

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x axis

y
ax

is

A Simple Plot

Mon Jun 23 11:54:34 2008

When more complex arrangements of viewports are involved, there may be a bewildering
array of viewports created, which may make it difficult for other users to revisit a particular
region of a plot. A lattice plot is a good example. In such cases, it will be more cooperative
to use upViewport() rather than popViewport() and leave the viewports that were created
during the drawing of the plot. Other users can then use vpPaths to navigate to the desired
region. For example, here is a slight modification of the original series of commands, where
the original data viewport is given a name and upViewport() is used at the end.

> data.vp <- viewport(name = "dataregion", x = unit(5,

+ "lines"), y = unit(4, "lines"), width = unit(1,

+ "npc") - unit(7, "lines"), height = unit(1,

+ "npc") - unit(7, "lines"), just = c("left",

+ "bottom"), xscale = range(x) + c(-0.05, 0.05) *

+ diff(range(x)), yscale = range(y) + c(-0.05,

+ 0.05) * diff(range(y)))

> pushViewport(data.vp)

> grid.points(x, y)

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.text("x axis", y = unit(-3, "lines"), gp = gpar(fontsize = 14))

> grid.text("y axis", x = unit(-4, "lines"), gp = gpar(fontsize = 14),

4

+ rot = 90)

> grid.text("A Simple Plot", y = unit(1, "npc") +

+ unit(1.5, "lines"), gp = gpar(fontsize = 16))

> upViewport()

The date is now added using downViewport() to get to the data region.

> downViewport("dataregion")

> grid.text(date(), x = unit(1, "npc"), y = 0, just = c("right",

+ "bottom"), gp = gpar(col = "grey"))

> upViewport()

Writing a grid Function

Here is the scatterplot code wrapped up as a simple function.

> splot <- function(x = runif(10), y = runif(10),

+ title = "A Simple Plot") {

+ data.vp <- viewport(name = "dataregion", x = unit(5,

+ "lines"), y = unit(4, "lines"), width = unit(1,

+ "npc") - unit(7, "lines"), height = unit(1,

+ "npc") - unit(7, "lines"), just = c("left",

+ "bottom"), xscale = range(x) + c(-0.05,

+ 0.05) * diff(range(x)), yscale = range(y) +

+ c(-0.05, 0.05) * diff(range(y)))

+ pushViewport(data.vp)

+ grid.points(x, y)

+ grid.rect()

+ grid.xaxis()

+ grid.yaxis()

+ grid.text("y axis", x = unit(-4, "lines"),

+ gp = gpar(fontsize = 14), rot = 90)

+ grid.text(title, y = unit(1, "npc") + unit(1.5,

+ "lines"), gp = gpar(fontsize = 16))

+ upViewport()

+ }

There are several advantages to creating a function:

1. We get the standard advantages of a function: we can reuse and maintain the plot
code more easily.

2. We can slightly generalise the plot. In this case, we can use it for different data and
have a different title. We could add more arguments to allow different margins, control
over the axis scales, and so on.

3. The plot can be embedded in other graphics output.

5

Here is an example which uses the splot() function to create a slightly modified scatterplot,
embedded within other grid output.

> grid.rect(gp = gpar(fill = "grey"))

> message <- paste("I could draw all sorts", "of stuff over here",

+ "then create a viewport", "over there and stick",

+ "a scatterplot in it.", sep = "\n")

> grid.text(message, x = 0.25)

> grid.lines(x = unit.c(unit(0.25, "npc") + 0.5 *

+ stringWidth(message) + unit(2, "mm"), unit(0.5,

+ "npc") - unit(2, "mm")), y = 0.5, arrow = arrow(angle = 15,

+ type = "closed"), gp = gpar(lwd = 3, fill = "black"))

> pushViewport(viewport(x = 0.5, height = 0.5, width = 0.45,

+ just = "left", gp = gpar(cex = 0.5)))

> grid.rect(gp = gpar(fill = "white"))

> splot(1:10, 1:10, title = "An Embedded Plot")

> upViewport()

I could draw all sorts
of stuff over here

then create a viewport
over there and stick
a scatterplot in it.

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2

4

6

8

10

y
ax

is

An Embedded Plot

It is still straightforward to annotate the scatterplot as long as we have enough information
about the viewports. In this case, a non-strict downViewport() will still work (though note
that upViewport(0) is required to get right back to the top level).

6

Creating grid Graphical Objects

A grid function like the one in the previous section provides output which is very flexible
and can be annotated in arbitrary ways and can be embedded within other output. This is
likely to satisfy most uses.

However, there are some things that cannot be done (or at least would be extremely hard
to do) with such a function. The output produced by the function cannot be addressed as a
coherent whole. It is not possible, for example, to to change the x and y data used in the plot
and have the points and axes update automatically. There is no scatterplot object to save;
the individual components exist, but they are not bound together as a whole. If/when these
sorts of issues become important, it becomes necessary to create a grid graphical object (a
grob) to represent the plot.

The first step is to write a function which will create a grob – a constructor function. In
most cases, this will involve creating a special sort of grob called a gTree; this is just a grob
that can have other grobs as children. Here’s an example for creating an splot grob. I have
put bits of the construction into separate functions, for reasons which will become apparent
later.

> splot.data.vp <- function(x, y) {

+ viewport(name = "dataregion", x = unit(5,

+ "lines"), y = unit(4, "lines"), width = unit(1,

+ "npc") - unit(7, "lines"), height = unit(1,

+ "npc") - unit(7, "lines"), just = c("left",

+ "bottom"), xscale = range(x) + c(-0.05,

+ 0.05) * diff(range(x)), yscale = range(y) +

+ c(-0.05, 0.05) * diff(range(y)))

+ }

> splot.title <- function(title) {

+ textGrob(title, name = "title", y = unit(1,

+ "npc") + unit(1.5, "lines"), gp = gpar(fontsize = 16),

+ vp = "dataregion")

+ }

> splot <- function(x, y, title, name = NULL, draw = TRUE,

+ gp = gpar(), vp = NULL) {

+ spg <- gTree(x = x, y = y, title = title,

+ name = name, childrenvp = splot.data.vp(x,

+ y), children = gList(rectGrob(name = "border",

+ vp = "dataregion"), xaxisGrob(name = "xaxis",

+ vp = "dataregion"), yaxisGrob(name = "yaxis",

+ vp = "dataregion"), pointsGrob(x,

+ y, name = "points", vp = "dataregion"),

+ textGrob("x axis", y = unit(-3, "lines"),

+ name = "xlab", gp = gpar(fontsize = 14),

+ vp = "dataregion"), textGrob("y axis",

+ x = unit(-4, "lines"), name = "ylab",

+ gp = gpar(fontsize = 14), rot = 90,

+ vp = "dataregion"), splot.title(title)),

+ gp = gp, vp = vp, cl = "splot")

7

+ if (draw)

+ grid.draw(spg)

+ spg

+ }

There are four important additions to the argument list compared to the original splot()
function:

1. The name argument allows a string identifier to be associated with the scatterplot
object we create. This is important for being able to specify the scatterplot when
we try to edit it after drawing it and/or when it is part of a larger grob (see later
examples).

2. The draw argument makes it possible to use the function in a procedural manner as
before:

> splot(1:10, 1:10, "Same as Before", name = "splot")

splot[splot]

> downViewport("dataregion")

> grid.text(date(), x = unit(1, "npc"), y = 0, just = c("right",

+ "bottom"), gp = gpar(col = "grey"))

> upViewport(0)

3. The gp argument allows the user to supply gpar() settings for the scatterplot as a
whole.

4. The vp argument allows the user to supply a viewport for the splot grob to be drawn
in. This is especially useful for specifying a vpPath when the splot is used as a
component of another grob (see scatterplot matrix example below).

The important parts of the gTree definition are:

1. The children argument provides a list of grobs which are part of the scatterplot.
When the scatterplot is drawn, all children will be drawn. Notice that instead of the
procedural grid.*() functions we use *Grob() functions which just produce grobs
and do not perform any drawing. Also notice that I have given each of the children a
name; this will make it possible to access the components of the scatterplot (see later
examples).

2. The childrenvp argument provides a viewport (or vpStack, vpList, or vpTree) which
will be pushed before the children are drawn. The difference between this argument
and the vp argument common to all grobs is that the vp is pushed before drawing the
children and then popped after, whereas the childrenvp gets pushed and then a call
to upViewport() is made before the children are drawn. This allows the children to
simply specify the viewport they should be drawn in by way of a vpPath in their vp
argument. In this way, viewports remain available for further annotation such as we
have already seen in procedural code.

8

3. The gp and vp arguments are automatically handled by the gTree drawing methods
so that gpar() settings will be enforced and the viewport will be pushed when the
splot is drawn.

4. The cl argument means that the grob created is a special sort of grob called splot.
This will allow us to write methods specifically for our scatterplot (see later examples).

Now that we have a grob, there are some more interesting things that we can do with it.
First of all, the splot grob provides a container for the grobs which make up the scatterplot.
If we modify the splot grob, it affects all of the children.

> splot(1:10, 1:10, "Same as Before", name = "splot")

> grid.edit("splot", gp = gpar(cex = 0.5))

2 4 6 8 10

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

x axis

y
ax

is

Same as Before

We can access elements of the splot grob to edit them individually.

> splot(1:10, 1:10, "Same as Before", name = "splot")

> grid.edit(gPath("splot", "points"), gp = gpar(col = 1:10))

9

2 4 6 8 10

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

x axis

y
ax

is

Same as Before

With a little more work we can make the scatterplot a bit more dynamic. The following
describes a editDetails() method for the splot grob. This will be called whenever a
scatterplot is edited and will update the components of the scatterplot.

> editDetails.splot <- function(x, specs) {

+ if (any(c("x", "y") %in% names(specs))) {

+ if (is.null(specs$x))

+ xx <- x$x

+ else xx <- specs$x

+ if (is.null(specs$y))

+ yy <- x$y

+ else yy <- specs$y

+ x$childrenvp <- splot.data.vp(xx, yy)

+ x <- addGrob(x, pointsGrob(xx, yy, name = "points",

+ vp = "dataregion"))

+ }

+ x

+ }

> splot(1:10, 1:10, "Same as Before", name = "splot")

splot[splot]

10

> grid.edit("splot", x = 1:100, y = (1:100)^2)

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

x axis

y
ax

is

Same as Before

●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

The splot grob can also be used in the construction of other grobs. Here’s a simple
scatterplot matrix grob2.

> cellname <- function(i, j) {

+ paste("cell", i, j, sep = "")

+ }

> splom.vpTree <- function(n) {

+ vplist <- vector("list", n^2)

+ for (i in 1:n) for (j in 1:n) vplist[[(i -

+ 1) * n + j]] <- viewport(layout.pos.row = i,

+ layout.pos.col = j, name = cellname(i,

+ j))

+ vpTree(viewport(layout = grid.layout(n, n),

+ name = "cellgrid"), do.call("vpList",

+ vplist))

+ }

> cellpath <- function(i, j) {

2Warning: As the number of grobs in a gTree gets larger the construction of the gTree will get slow.
If this happens, the best solution is to just use a grid function rather than a gTree, and wait for me to
implement some ideas for speeding things up!

11

+ vpPath("cellgrid", cellname(i, j))

+ }

> splom <- function(df, name = NULL, draw = TRUE) {

+ n <- dim(df)[2]

+ glist <- vector("list", n * n)

+ for (i in 1:n) for (j in 1:n) if (i == j)

+ glist[[(i - 1) * n + j]] <- textGrob(paste("diag",

+ i, sep = ""), gp = gpar(col = "grey"),

+ vp = cellpath(i, j))

+ else if (j > i)

+ glist[[(i - 1) * n + j]] <- textGrob(cellname(i,

+ j), name = cellname(i, j), gp = gpar(col = "grey"),

+ vp = cellpath(i, j))

+ else glist[[(i - 1) * n + j]] <- splot(df[,

+ j], df[, i], "", name = paste("plot",

+ i, j, sep = ""), vp = cellpath(i, j),

+ gp = gpar(cex = 0.5), draw = FALSE)

+ smg <- gTree(name = name, childrenvp = splom.vpTree(n),

+ children = do.call("gList", glist))

+ if (draw)

+ grid.draw(smg)

+ smg

+ }

> df <- data.frame(x = rnorm(10), y = rnorm(10),

+ z = rnorm(10))

> splom(df)

gTree[GRID.gTree.1055]

12

diag1 cell12 cell13

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

●

●

●

●

●

●

●

●

●

●

x axis

y
ax

is

diag2 cell23

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

● ●

●

●

x axis

y
ax

is

−2 −1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

●●

●

●

x axis

y
ax

is

diag3

This grob can be edited as usual:

> splom(df)

gTree[GRID.gTree.1063]

> grid.edit("plot21::xlab", label = "", redraw = FALSE)

> grid.edit("plot32::ylab", label = "", redraw = FALSE)

> grid.edit("plot21::xaxis", label = FALSE, redraw = FALSE)

> grid.edit("plot32::yaxis", label = FALSE)

13

diag1 cell12 cell13

−2

−1.5

−1

−0.5

0

0.5

●

●

●

●

●

●

●

●

●

●

y
ax

is

diag2 cell23

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

● ●

●

●

x axis

y
ax

is

−2 −1.5 −1 −0.5 0 0.5

●

●

●

●

●

●

●●

●

●

x axis

diag3

But of more interest, because this is a grob, is the programmatic interface. With a grob (as
opposed to a function) it is possible to modify the description of what is being drawn via
an API (as opposed to having to edit the original code). In the following, we remove one of
the “spare” cell labels and put in its place the current date.

> splom(df, name = "splom")

gTree[splom]

> grid.remove("cell12")

> grid.add("splom", textGrob(date(), name = "date",

+ gp = gpar(fontface = "italic"), vp = "cellgrid::cell12"))

14

diag1 cell13

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

●

●

●

●

●

●

●

●

●

●

x axis

y
ax

is

diag2 cell23

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

● ●

●

●

x axis

y
ax

is

−2 −1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

●●

●

●

x axis

y
ax

is

diag3

Mon Jun 23 11:54:42 2008

With the date added as a component of the scatterplot matrix, it is saved as part of the
matrix. The next sequence saves the scatterplot matrix, loads it again, extracts the bottom-
left plot and the date and just draws those two objects together.

> splom(df, name = "splom")

gTree[splom]

> grid.remove("cell12")

> grid.add("splom", textGrob(date(), name = "date",

+ gp = gpar(fontface = "italic"), vp = "cellgrid::cell12"))

> smg <- grid.get("splom")

> save(smg, file = "splom.RData")

> load("splom.RData")

> plot <- getGrob(smg, "plot31")

> date <- getGrob(smg, "date")

> plot <- editGrob(plot, vp = NULL, gp = gpar(cex = 1))

> date <- editGrob(date, y = unit(1, "npc") - unit(1,

+ "lines"), vp = NULL)

> grid.newpage()

> grid.draw(plot)

> grid.draw(date)

15

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

●

●

●

●

●

●

● ●

●

●

x axis

y
ax

is

Mon Jun 23 11:54:46 2008

All of this may seem a bit irrelevant to interactive use, but it does provide a basis for creating
an editable plot interface like M Kondrin’s Rgrace package.

16

