Directed acyclic graphs (DAGs) for causal analysis

Ph.D. course in epidemiology

Niels Keiding
February 2014

Simpson (1951): Conditional or marginal effect measures

<table>
<thead>
<tr>
<th></th>
<th>B=1</th>
<th>B=0</th>
<th>OR = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A=0</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

C = 1

<table>
<thead>
<tr>
<th></th>
<th>B=1</th>
<th>B=0</th>
<th>OR = 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>A=0</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

C = 0

Supporting text

Simpson: baby playing cards

A = 0 court cards (B, D, K) B = 0 red (heart, diamond)
A = 1 not court cards (A, 2, 3,…, 10) B = 1 black (spade, club)
C = 1 card dirty because baby played with it
C = 0 card clean

Is colour independent of court status?

Yes, marginally OR = 1
No, conditionally on dirtiness OR = 5/6 for C = 1 and for C = 0.

Relevant effect measure: Marginal
Simpson: medical treatment

<table>
<thead>
<tr>
<th></th>
<th>B=1</th>
<th>B=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>A=0</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

C = 1

<table>
<thead>
<tr>
<th></th>
<th>B=1</th>
<th>B=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>A=0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

C = 0

<table>
<thead>
<tr>
<th></th>
<th>B=1</th>
<th>B=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=1</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>A=0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

OR = 1

OR = 5/6

A = 0 not treated B = 0 not dead C = 1 male
A = 1 treated B = 1 dead C = 0 female

Does treatment affect death?

No, marginally OR = 1

Yes for males, OR of dying = 5/6

Yes for females, OR of dying = 5/6

Relevant effect measure: Conditional on sex.

Baby playing cards

A court

B dirty

C colour

Even if A and B are independent, they become artificially associated by conditioning on the collider C (selection bias)

Medical treatment

A treatment B death

Treatment as well as death depends on sex which is a possible confounder that should be controlled for.

Causal explanations of statistical dependence (association) between X and Y

1. Random fluctuation
2. X caused Y
3. Y caused X
4. X and Y share a common cause (includes mixing of two populations where there is independence in each subpopulation)
5. Selection bias (conditioning on common effect of X and Y)

Directed Acyclic Graphs: Causal

X direct cause of Y

U direct cause of Y

Y direct cause of Z

X not direct cause of Z but indirect cause of Z via Y

U not direct cause of Z but indirect cause of Z via Y

There are no common causes not shown in the graph.
Directed Acyclic Graphs: Statistical

Variables are **dependent** if there is an unblocked path between them otherwise **independent**

- X and Y are statistically dependent
- U and Y are statistically dependent
- Y and Z are statistically dependent
- X and Z are statistically dependent
- U and Z are statistically dependent

Collider

- Y is a collider between X and U: $X \rightarrow Y \leftarrow U$.
- A collider blocks a path
- Conditioning on the collider unblocks the path
- X and U are statistically independent (the only path between them is blocked by the collider Y)
- X and U are statistically dependent given Y (conditioning on Y unblocks the path)
- X and U are statistically dependent given Z (Z is descendant of Y)
- U and Z are statistically independent given Y

Ex: Basketball players are tall and/or fast

Basic assumptions on DAGs

Causal Markov Assumptions: any variable X is independent of any other variable Y conditional on the direct causes of X, unless Y is an effect of X.

Faithfulness: Two pathways with positive and negative causal effects never perfectly offset one another.

No measurement error: Assume large samples

Example

- $Z \rightarrow X \rightarrow Y$
- $U \rightarrow X$

Question: is there a causal effect of X on Y? (that is: should there also be an arrow from X to Y?)
Answer: U is a confounder, must be ‘controlled’ (we must condition on U)

Question: is there a causal effect of Z on Y?
Answer: the relation between Z and Y is unconfounded, no need for conditioning on U
Confounding

Treatments and outcomes share a common cause (which may be unmeasured)

Heart disease → Drug → Stroke

Atherosclerosis (unmeasured)

Confounding by indication

Personality & SES (unmeasured)

Smoking

Death

Exercise

Confounding and DAGs

There is a backdoor path between X and Y and this has to be blocked to make the study unconfounded.

Sufficient set Z of covariates to control for confounding:
1. no variable in Z is a descendant of X
2. every path between X and Y that contains an arrow pointing into X is blocked by Z

The M structure

Assume binary exposure: \(a = 0, 1 \)

Each individual \(i \) has two outcomes \(\gamma_i^0 \) if \(a \) is assigned to be 0

\(\gamma_i^1 \) if \(a \) is assigned to be 1

We would like to know \(\gamma_i^1 - \gamma_i^0 \), the causal effect.

Counterfactual model of causality

Not possible

Average causal effect over the population

\[
E(\gamma_i^1) - E(\gamma_i^0)
\]
Randomised trial

Half of the population is assigned to \(a = 0 \), half to \(a = 1 \).

\[E (Y^1) \] is well estimated by average of effect for those assigned to \(a = 1 \)

\[E (Y^0) \] is well estimated by average of effect for those assigned to \(a = 0 \)

Average causal effect over the population is estimable in a randomized trial.

Selection bias

\[
\begin{array}{c}
X \\
\rightarrow \quad C \\
\end{array}
\]

Conditioning on common effect.

Example: \(X \) haplotype \(Y \) smoking \(C \) heart disease

Question: Does haplotype affect smoking behaviour?

Both \(X \) and \(Y \) cause heart disease but \(X \) and \(Y \) are unassociated. If we only select patients *with* heart disease, those without the dangerous haplotype will be more likely to be smokers, since the heart disease has to come from somewhere.

Example (Berkson bias). \(X \) and \(Y \) diseases; \(C \) = hospitalization.

Selection bias: example from case-control studies

\[
\begin{array}{c}
X \\
\rightarrow \quad F \\
Y \\
\rightarrow \quad C \\
\end{array}
\]

\(X = \) oestrogen \quad \(F = \) hip fracture \quad \(C = \) selection \quad \(Y = \) AMI

Oestrogen protects against hip fracture, so controls are less likely to be on oestrogen than cases even when there is no association between \(X \) and \(Y \).
Randomised trials and instrumental variables

\[Z \rightarrow X \rightarrow Y \]

\[U \]

We want to assess possible effect of \(X \) on \(Y \), but there may be unmeasured confounders \(U \).

Randomized trial

\(Z \) treatment assigned

\(X \) treatment received

Intention to treat test: compare \(Z = 0 \) to \(Z = 1 \).

Estimation: long story. Effect of \(Z \) on \(Y \) is diluted version of effect of \(X \) on \(Y \).

Instrumental variables

\[Z \rightarrow X \rightarrow Y \]

\[U \]

\(Z \) is associated with \(X \)

All unblocked paths between \(Z \) and \(Y \) must pass through \(X \).

There is a statistical methodology allowing estimation of the effect of \(X \) on \(Y \) from the effect of \(Z \) on \(X \) and \(Y \).

Time-dependent confounders, or feed-back

Feed-back from outcome \(Y_i \) to covariate \(X_{i+1} \)

\[Y_i \rightarrow Y_{i+1} \]

\[X_{i+1} \rightarrow X_i \]

\(Y_i \) intermediate between \(X_{i+1} \) and \(Y_{i+1} \)

so do not condition on \(Y_i \)

\(Y_i \) confounder for effect of \(X_i \) on \(Y_{i+1} \)

So “control” for \(Y_i \) e.g. by conditioning

Robins: g-computation, marginal structural models

Robins (1986) generalized direct standardization to the time-dependent confounding situation and formulated other approaches using inverse probability weighting such as marginal structural models (2000). A very readable survey is by Daniel et al. (2013).