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E
pidemiologists typically seek to answer causal questions using statistical data:

we observe a statistical association between poverty and early mortality and

seek to determine whether poverty causes early death. An essential component of

epidemiologic training is therefore learning what statistical relations imply, or

do not imply, about causal relations. This is why the cliché “correlation does

not imply causation” is the mantra of introductory epidemiology classes. But cor-

relations, and other forms of statistical association, do give us information

about causal relations, and this is why—despite the oft-repeated warnings—

quantitative statistical analyses are the mainstay of epidemiology.

Diagrams are routinely used informally to express beliefs and hypotheses about

relations among variables. These informal uses can be greatly expanded by adopt-

ing formal rules for drawing the diagrams so that they meet the criteria for causal

Directed Acyclic Graphs (DAGs). Causal DAGs are a simple, flexible device for

demonstrating the statistical associations implied by a given set of assumptions

about the causal structure relating variables. Knowing this, we can also move in

the other direction: given a set of statistical associations observed in the data, we

can identify all of the causal structures that could have given rise to these asso-

ciations. Learning the rules for reading off statistical associations from the causal

assumptions represented in a DAG can take a little time and practice. Once mas-

tered, though, these rules turn out to be extremely practical for a number of tasks

(for example, choosing regression covariates, understanding selection bias,
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interpreting tests of “direct” effects, or assessing natural experiments). Using DAGs

makes it easier to recognize and avoid mistakes in these and a number of other

analytic decisions. The rules linking causal relations to statistical associations are

grounded in mathematics, and one way to think of the usefulness of causal dia-

grams is that they allow non-mathematicians to draw rigorous, mathematically

based conclusions about certain types of statistical relations.

In this chapter, I first introduce some language and background assumptions;

I then describe the rules for drawing causal DAGs and the associated rules link-

ing the causal assumptions encoded in a DAG to the statistical relations implied

by these structural assumptions; and finally, I discuss a few applications of DAGs

within social epidemiology. Some readers may prefer to begin with the examples

and refer back to the definitions and rules for DAGs as needed; however, the

material described in the section on the d-separation rules is essential for follow-

ing the examples. A number of excellent and more comprehensive introduc-

tions to DAGs, many written by the researchers who developed the ideas, are

available elsewhere (Greenland et al. 1999; Pearl 2000; Robins 2001; Spirtes et al.

2000). My goal in this chapter is to provide a basic introduction to demonstrate

the utility of DAGs for applied social epidemiology researchers.

Some Background Definitions

Causal inference is an important problem in many applied disciplines, and much

of the work written on the topic has been addressed to readers in fields other than

epidemiology. The writing on causal inference can sometimes be dense or tech-

nical. I will begin by explaining how I use key terms. Note that some of my uses

(for example, the definition of cause) are controversial and I encourage the reader

to see others who disagree. Debating the definitions is beyond the scope of this

chapter, and little of the discussion of DAGs would be affected by adopting such

alternative definitions.

Define X and Y as random variables. We say X causes Y if, had X taken a dif-

ferent value than it actually did—and nothing else temporally prior to or simulta-

neous with X differed—then Y would have taken a different value. To accommodate

the possibility that causation is not deterministic, we can say that had X taken a dif-

ferent value, this would have resulted in a different probability distribution for Y.

It is invaluable to frame our research question in terms of a hypothetical in-

tervention on X. For example, instead of asking, “Does income affect diabetes risk

among Cherokee tribal members?” we ask, “Would sending each tribal member an

annual check for $4,000 from the Cherokee Nation government change their dia-

betes risk?” The effect of such a check might differ from other ways of changing in-

come—for example, increasing wages or providing in-kind donations or changing
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tax rates—even if these approaches had identical net monetary value. Most im-

portantly, referring to a hypothetical intervention distinguishes the causal question

from related statistical questions, such as “Do high-income individuals have lower

diabetes risk compared with low-income individuals?” The hypothetical interven-

tion must directly affect only the exposure X, although other things might also change

if they are consequences of exposure (Pearl 2000; Spirtes et al. 2000). For example,

an intervention such as sending a check may affect diet as well as income, but only

because recipients use the extra income to buy different foods. It need not be pos-

sible for the researcher to conduct the intervention; there must merely be some con-

ceivable way that X could take a different value, even if by random assortment. The

definition of “cause” is the topic of heated and extensive debate; see for example

(Dawid 2000; Glymour 1986; Hernán 2004; Holland 1986a, 1986b; Kaufman and

Cooper 1999, 2001; Parascandola and Weed 2001; Pearl 2000; Woodward 2003).

We say X and Y are statistically independent if knowing the value of X does

not provide any information about the value of Y (if X is independent of Y, Y is

also independent of X ). Conversely, we say X and Y are statistically dependent
if knowing the value of X gives us some information about the likely value of Y,

even if this information is very limited and amounts to a modest change in the

probability distribution of Y. If there is some value X of X that is informative about

the probability distribution of Y, we say that X and Y are statistically dependent.

Note that statistical dependency may be assessed with various statistical parame-

ters, some of which depend on additional assumptions (for example, regression

coefficients, odds ratios, t tests, chi-square tests, or correlation coefficients).

It is very helpful to distinguish between words that denote causal relations and

words that denote statistical relations (Pearl 2001). “Cause,” “influence,” “change,”

“increase,” “decrease,” and “promote” are all examples of causal language.
Association, prediction, and any specific measures of statistical association such

as regression coefficients and so forth are examples of statistical language. When

a statistical association is reported in an epidemiology article, it is generally with

the hope (sometimes unstated) of using this to give insight into a causal relation.

Surveillance reports and predictive (as opposed to etiologic) models are exceptions;

in these cases, causal inference is not of primary interest.

If we examine the distribution of one variable, Y, within levels of a second vari-

able X, we say that we are examining the distribution of Y conditional on X. Con-

ditional relations are often denoted in equations with the symbol “ ”. For example,

if p(Y ) denotes the probability distribution of Y, a formal definition of statistical

independence is:

(1)

which would be read “the probability distribution of Y conditional on X equals the

marginal (or unconditional) probability distribution of Y.” In other words, knowing

p(Y ƒ X ) � p(Y )

�
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the value of X does not give us information about the distribution of Y (for any

value X of X ).

Similarly, if we examine the relations between two variables within levels of

a third variable—for example, the relation between income and mortality within

levels of education—we say we are examining the conditional relation. Stratifi-

cation, restriction, matching, and covariate adjustment in regression models are

all statistical techniques that are special types of conditioning. If two variables X

and Y are statistically independent without conditioning on any other variables,

we say X and Y are marginally independent. If X and Y are independent, con-

ditional on Z , then:

(2)

Although causal dependence and statistical dependence are not the same, they

are related phenomena. To understand how causal and statistical relations are

linked, note that statistical dependency between two variables X and Y could reflect

any of five situations (or combinations of these):

1. Random fluctuation.

2. X caused Y.

3. Y caused X.

4. X and Y share a common cause1

5. The statistical association was induced by conditioning on a common effect of

X and Y (as in selection bias).

The task epidemiologists typically face is to decide which of these explana-

tions is consistent with our data and background knowledge and rule out all oth-

ers. Often we are especially interested in demonstrating that X likely caused

Y (perhaps because this may offer the best prospects for publication). Confidence

intervals and p-values are used to assess the plausibility of the first explanation for

a statistical association. Temporal order can rule out explanation three, and this

is why longitudinal studies are advantageous for demonstrating causation. Ruling

out common prior causes, explanation four, is the goal of most covariate

p(Y ƒ X,Z ) � p(Y ƒ Z )
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1Note that a variation on this situation is the possibility that the sample is composed of two

subsamples, each of which has a different marginal probability distribution of X and of Y. In

the combined population, X and Y may be statistically dependent even if they were indepen-

dent in each of the subsamples. This is sometimes considered a sixth possibility to explain a

statistical dependency between X and Y. I treat this as a special case of situation four, how-

ever. To frame it this way, consider subsample membership to be a variable that is a common

cause of X and Y.
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adjustment in regression models. Covariate stratification is also frequently, though

not universally, motivated by the desire to eliminate the possibility of common

prior causes. Explanation five—the association was induced by conditioning on a

common effect—is confusing for many people, and it is perhaps for this reason

that this possibility is often ignored. This phenomenon is crucial in many settings,

though, so I will try to give an intuitive explanation here (it will come up again

in the examples section of the chapter).

Why does conditioning on a common effect of two variables induce a sta-

tistical association between those variables? The easiest way to hold onto this idea

is to find a simple anecdote that describes the phenomenon. For example, sup-

pose you believe that two factors determine basketball prowess: height and speed.

Exceptional players must be either extremely tall or extremely fast. If you ex-

amined everyone in the world, height and speed might be statistically indepen-

dent. Short people are not necessarily fast, nor are tall people; however, if you

look only at professional basketball players, you would confidently guess that the

short ones are very fast. People without the advantage of height must compensate

with lightening speed in order to become great ball players. By restricting to

pro basketball players, you have conditioned on a common effect of height and

speed, and within this stratum of pro ball players, height and speed are (inversely)

associated. This is not a perfect association, because some of the tall players may

also be fast. And it is also possible that speed and height are correlated in the gen-

eral population. The point is merely that, whatever the association between speed

and height in the general population, it is quite different among professional bas-

ketball players.

This phenomenon—the change in association between two variables when

conditioning on their common effect—is sometimes called collider bias because

the two causes “collide” at the common effect. It can be induced by sample

selection, stratification, or covariate adjustment if some of the covariates are effects

of the other independent variables (Hernán et al. 2004).

We say the association between X and Y is confounded if the statistical

association between X and Y does not equal the causal relation between the two

variables. For example, if X and Y are both influenced by Z, the crude (marginal)

relation between X and Y is likely confounded, although the relation between X

and Y conditional on Z may be unconfounded. If conditioning upon a set of

covariates Z will render the association between X and Y unconfounded, then

we say Z is a sufficient set of covariates for estimating the relation between X and

Y. A sufficient set may be empty (if the crude relation between X and Y is un-

confounded), or it may contain one or many variables. Furthermore, there may

be several alternative sufficient sets for any pair of variables X and Y (Greenland

and Robins 1986; Greenland et al. 1999).
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Graphical Models

With this background and common language, we now turn to causal DAGs. First,

I outline the rules for expressing causal assumptions in a DAG. Next, I explain the

d-separation rules, which describe how to read from the DAG the set of statisti-

cal associations implied by the causal assumptions encoded in that DAG. Formal

introductions to graphical models, explanations of how DAGs relate to conven-

tional structural equation models, and proof of the mathematical equivalence

between the rules we apply to DAGs and Robins’ g-computation formula can be

found elsewhere (Greenland et al. 1999; Pearl 2000; Robins 1987, 1995; Spirtes

et al. 2000).

Drawing a Causal DAG2

Causal DAGs visually encode an investigator’s a priori assumptions about causal

relations among the exposure, outcomes, and covariates. In a causal DAG, we

say that a variable X causes a variable Y directly (relative to the other variables in

the DAG) if there is an arrow from X to Y or indirectly if there is a sequence of di-

rected arrows that can be followed from X to Y via one or more intermediate vari-

ables. In Figure 16.1, X causes Y directly and Z indirectly. The descendants of a

variable are the other variables in the DAG affected either directly or indirectly by

that variable. If two variables shown in a DAG share a common cause, that com-

mon cause must also be included in the DAG or else the DAG is not considered

“causal.” It is not necessary to include all causes of individual variables in the DAG;

only causes of two or more variables in the DAG must be included. If unknown

or unmeasured common causes are assumed to exist, these should be represented

in the diagram as unknown common causes with arrows to the variables that

they are thought to affect. The absence of a sequence of directed arrows linking

two variables in a DAG represents the assumption that there is no causal relation

between the two variables. If a prior value of Y affects X, which affects a subse-

quent value of Y, these must each be shown as separate variables (for example,

. Directed acyclic graphs must not have any cycles between vari-

ables, consistent with the general intuition that if X causes Y, Y cannot also cause

X at the same moment.

Y0 S X1 S Y2)

392 Methods in Social Epidemiology

2This section, the following section on d-separation rules, and Figure 16.1 are taken substan-

tially from Appendix Two in Glymour et al., “When is baseline adjustment useful in analyses

of change? An example with education and cognitive change.” American Journal of Epidemiology,

2005, 162(3) 267–278, by permission of Oxford University Press.
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The d-Separation Rules Linking Causal Assumptions 
to Statistical Independencies

After drawing a DAG to represent our causal assumptions, we can apply the 

d-separation rules to find the statistical relations implied by these assumptions.

Before introducing the d-separation rules, I mention three assumptions adopted

throughout the rest of the chapter. These assumptions are discussed in more detail

at the conclusion of this section.
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FIGURE 16.1. CAUSAL DIAGRAMS DEPICTING A 
VALID INSTRUMENT.

Y

X

U

Z

Causal assumptions represented in
DAG 1:

• X and U are each direct causes of Y (direct
with respect to other variables in the
DAG).

• Y is a direct cause of Z.
• X is not a direct cause of Z, but X is an in-

direct cause of Z via Y.
• X is not a cause of U and U is not a cause

of X.
• U is not a direct cause of Z, but U is an in-

direct cause of Z via Y. 
• No two variables in the DAG (X, U, Y, or Z)

share a prior cause not shown in the DAG,
e.g., no variable causes both X and Y, or
both X and U .

Statistical relations implied by the
assumptions in the example causal
DAG (note that this is not a comprehensive
list of all the conditional relations and that
the statistical dependencies listed here as-
sume faithfulness):

• X and Y are statistically dependent.
• U and Y are statistically dependent.
• Y and Z are statistically dependent.
• X and Z are statistically dependent.
• U and Z are statistically dependent.
• X and U are statistically independent

(the only path between them is blocked
by the collider Y).

• X and U are statistically dependent, con-
ditional on Y (conditioning on a collider
unblocks the path).

• X and U are statistically dependent, con-
ditional on Z (Z is a descendant of the
collider Y).

• X and Z are statistically independent,
conditional on Y (conditioning on Y
blocks the path between X and Z).

• U and Z are statistically independent,
conditional on Y.
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1. The Causal Markov Assumption (CMA): any variable X is independent of

any other variable Y conditional on the direct causes of X, unless Y is an effect of X.

The CMA is consistent with most accounts of causation and, although rarely

stated in these words, is often implicitly invoked in applied research.

2. Faithfulness: positive and negative causal effects never perfectly offset one

another; that is, if X affects Y through two pathways, one positive and one negative,

the net statistical relation between X and Y will be either positive or negative. If

the two paths perfectly offset one another, the net statistical association would be

zero, in which case we say the statistical associations are unfaithful to the causal

relations. Under faithfulness, we assume this situation never occurs.

3. Negligible randomness: statistical associations or lack of associations are not

attributable to random variation or chance (that is, we assume a large sample size).

The DAG expresses a set of assumptions about the causal relations or ab-

sence of causal relations among the variables. If the assumptions of a causal

DAG are correct, then two variables in the DAG will be statistically independent

conditional on a set of covariates if every path between the two variables is

blocked. What is a path and what does it mean to block it? A path is any se-

quence of lines (also called edges) connecting two variables regardless of the direc-

tion of the arrowheads. The direction of arrowheads is important to identify

variables on a path that are colliders. If arrowheads from A and B both point

to a variable C (as in: ), then C is referred to as a collider on that path

between A and B: the causes collide at C. In other words, a collider is a common

effect of two variables on the path (the collider itself must also be on the path).

All other variables on a path are non-colliders. A path is blocked by condition-

ing on a proposed set of variables Z if either of two conditions holds:

1. One of the non-colliders on the path is in the set of variables Z, or;

2. There is a collider on the path, and neither the collider nor any of the collider’s

descendants is in Z.

These rules fit with the intuition that two variables will be correlated if one

causes the other or there is an uncontrolled common prior cause of the two

variables. The rules also reflect the fact that a statistical association between

two variables can be induced by conditioning on a common effect of the two

variables (Greenland et al. 1999; Hernán et al. 2002), as described in the pro

basketball example. Note that if a collider on a path is in the proposed covariate

set, this collider does not block the path. If a DAG contains no unblocked paths

between A and B, the two variables will be marginally independent; that is,

without conditioning on any other variables, A and B will be independent. If

we assume faithfulness, two variables in a DAG will be statistically dependent

A S C d B
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if there is an unblocked path between them. Rule (2) implies that conditioning

on a variable may unblock a path between A and B and induce a correlation

if that variable is a collider or a descendant of a collider on a path between

A and B.

To make these ideas more concrete, consider the example DAG in Figure 16.1.

This figure shows a causal DAG and lists the causal assumptions represented by

that DAG and the statistical associations implied, under the d-separation rules, by

those causal assumptions. For example, the assumptions encoded in the DAG

imply that X and U are marginally independent but become statistically associ-

ated after conditioning on either Y or Z. In contrast, X and Z are marginally de-

pendent but become statistically independent after conditioning on Y.

The Assumptions for Using Causal DAGs

Now we return to the assumptions we stated earlier: Causal Markov, Faithfulness,

and negligible randomness. Why do we need these assumptions and should we accept

them? The Causal Markov Assumption (CMA) is consistent with intuition: if we

hold constant the factors that are direct causes of a variable X, then other factors will

be independent of fluctuations in X, unless these other variables are themselves in-

fluenced by X. Imagine a string of dominos with letters from A to Z lined up in order.

Flipping domino A will cause all of the downstream dominos to fall as well. You can

interrupt the sequence of falling dominos by removing one in the middle (or hold-

ing it up so it doesn’t fall). If you hold F up, then flipping E will not affect G or any

subsequent domino; however, holding F will not interrupt the effect of flipping G

on H or I (see Glymour 2001, pp. 21–27, for a more extensive but accessible dis-

cussion of the CMA). Standard epidemiologic reasoning often appeals to the CMA.

For example, the injunction against conditioning on mediators if you wish to esti-

mate the total effect of an exposure on the outcome implicitly relies on CMA.

The faithfulness assumption, that positive and negative effects never perfectly

offset one another, is valuable because, formally, the d-separation rules define the

statistical independencies implied by the assumptions in the DAG. Although the sta-

tistical independencies are interesting, we would often like to know about the

statistical dependencies. These do not automatically follow from the d-separation rules,

because two variables in a DAG might be statistically independent even though this

independence is not implied by the causal structure. If two pathways with equal

and opposite counterbalancing effects link two variables in a DAG, these two

variables will be statistically independent despite their causal connection. To ex-

tend the d-separation rules to define the statistical dependences implied by a DAG,

we must assume faithfulness. Some researchers contend that faithfulness is com-

monly violated in the real world. Nonetheless, the major implications from the

examples in the rest of the chapter would stand if we did not assume faithfulness.
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We assume negligible randomness, because DAGs give no information on

whether statistical relations are likely to have arisen by chance due to random vari-

ation. To focus on DAGs we will assume that effects due to random variation

can be ignored (for example, because you are looking at statistical associations in

a very large sample). Without this assumption, the examples in the rest of the chap-

ter would hold asymptotically.

These three assumptions should be clearly distinguished from the content-specific

causal assumptions encoded in DAGs, which relate specifically to the substantive

question at hand. By assuming CMA, faithfulness, and negligible randomness, we

can link the causal assumptions in the DAG to probability statements about the vari-

ables. The CMA is fundamental for the d-separation rules. Faithfulness allows us to

predict statistical associations instead of just statistical independencies. Negligible

randomness lets us ignore random variations that would appear in small samples.

Applying DAGs to Answer Questions in Social Epidemiology

Why are DAGs useful? In general, we wish to test a hypothesis about how the world

works within the context of our prior beliefs. This is linked, sometimes implicitly,

to a desire to know what would happen if we intervened to change the value of

some treatment or exposure. Directed acyclic graphs help us answer the question:

under my prior assumptions, would the statistical analysis I am proposing provide

a valid test of my causal hypothesis? Consider Figure 16.2 and imagine you are in-

terested in testing whether X has a causal effect on Y (that is, you are unsure if there

should be an arrow from X to Y ). Other than this question, you believe the causal

structure is as drawn in Figure 16.2. It is immediately evident from the DAG that

the analysis must condition on U; U confounds the effect of X on Y. But suppose

that you are interested in estimating the effect of Z on Y. In this case, you need not

condition on U. The relation between Z and Y is unconfounded (as is the relation
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X

Z

U

Y
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between Z and X). Directed acyclic graphs provide a way to state explicitly one’s

prior beliefs about causal relations or alternative sets of plausible prior assump-

tions. We base decisions such as selection of covariates on these priors, although

the way in which priors shape these decisions is not always explicit.

We now turn to a number of examples in which DAGs can be used to clarify

epidemiologic ideas. In some cases, the DAGs simply provide a convenient way to

express well-understood concepts. In other examples, the DAGs illuminate a point

of common confusion regarding the biases introduced by proposed analyses or

study designs. In all these cases, the findings can be demonstrated mathematically

or by using any number of informal arguments. The advantage of DAGs is that

they provide a simple, common tool for understanding an array of different

problems.

Why Conventional Rules for Confounding Are Not Reliable

Earlier, I defined confounding in terms of contrasting statistical and causal asso-

ciations. A statistical association between two variables is confounded if it differs

from the causal relation between the two variables. This definition implies

graphical criteria for choosing a sufficient set of covariates, which is a set such

that within strata of the covariates the statistical relation between exposure and

outcome is unconfounded. That is, after specifying background causal assump-

tions using a DAG, we can identify from the DAG a sufficient set of covariates Z
for estimating or testing for an effect of X on Y; Z is such a sufficient set if (1) no

variable in Z is a descendant of X and (2) every path between X and Y that con-

tains an arrow into X is blocked by Z.

These rules are often called the “back-door” criteria, tapping the idea that

paths with arrows into X are “back-doors” through which a spurious (non-causal)

statistical association between X and Y might arise. When the back-door criteria

are fulfilled by a set of measured covariates, it is possible to estimate the total

average causal effect of X on Y. Under the graphical criteria, it is clear that there

may be several alternative sufficient sets to control confounding. Thus, it is pos-

sible that a given variable is included in one sufficient set but not in another. A re-

lated point is that these rules do not define a “confounder” but instead describe

when a conditional statistical association between two variables will be confounded

(see Maldonado 2002 for a helpful discussion of this distinction). Detailed

discussion of the graphical criteria can be found in Greenland et al. (1999) and

Pearl (2000, p. 79).

How do the graphical criteria relate to conventional criteria for identifying

confounders? In both intuition and application, the graphical and conventional
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criteria overlap substantially. For example, Hennekens and Buring explain that

confounding occurs when “an observed association . . . is in fact due to a mixing

of effects between the exposure, the disease, and a third factor . . .” (Hennekens

and Buring 1987, p. 35). Rothman and Greenland describe confounding as “a

distortion in the estimated exposure effect that results from differences in risk

between the exposed and unexposed that are not due to exposure.” (Rothman

and Greenland 1998, p. 255) The intuitions are similar.

Variations on the following specific criteria for identifying confounders are

frequently suggested, although it is often noted that these criteria do not “define”

a confounder:

1. A confounder must be associated with the exposure under study in the source

population.3

2. A confounder must be a risk factor for the outcome, though it need not actu-

ally cause the outcome.

3. The confounding factor must not be affected by the exposure or the outcome.

These rules are based on statistical associations, and we will refer to them

as the conventional statistical criteria for confounding (a slight misnomer be-

cause criterion [3] refers to a causal relation). As it turns out, these statistical

criteria often agree perfectly with the back-door criteria—that is, you would

choose the same set of covariates using either criteria. For example, in Figure

16.2, both the graphical and statistical criteria indicate that one should condi-

tion on U to derive an unbiased estimate of the effect of X on Y. It fulfills the

graphical criteria because U is not an effect of X, and the only path between

X and Y that contains an arrow into X is blocked by U. It fulfills the statistical

criteria because U and X will be statistically associated, U will also predict Y,

and U is not affected by X or Y. There are cases when the statistical and graph-

ical criteria disagree, however, and when they diverge, it is the statistical crite-

ria that fail.

The DAG in Figure 16.3 gives one example. We are interested in whether hav-

ing low education increases risk of type II diabetes; the DAG in Figure 16.3 de-

picts the causal null that education has no effect on diabetes. We have measured

mother’s diabetes status, but we do not have measures of the family’s income when

398 Methods in Social Epidemiology

3Sometimes this criterion states, instead, that the confounder must affect the outcome under

study. Under this alternative statement of the statistical criteria, the basic argument still

follows, in that there are situations in which the statistical and graphical criteria differ, and

when this occurs the graphical criteria are correct. The DAGs under which such a discrep-

ancy emerges are slightly more complicated than that in Figure 16.3, but an example is

discussed in detail in Greenland et al. (1999).
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the individual was growing up or if the individual’s mother had any genes that

would increase risk of diabetes. Under the assumptions in the DAG in Figure 16.3,

should we adjust our analysis for mother’s diabetes status? First we consider how

we would answer this question with the statistical criteria for a confounder, and

then we address it with the graphical criteria. The DAG in Figure 16.3 reflects the

assumption that family income during childhood affects both educational attain-

ment and mother’s diabetes status. The reasoning is that if an individual was poor

as a child, his or her mother was poor as an adult, and this poverty increased the

mother’s risk of developing diabetes (Robbins et al. 2001, 2005). Mother’s dia-

betes status will be statistically related to the respondent’s education, because under

these assumptions they share a common prior cause. It will also be related to the

risk that the respondent has diabetes, because the mother’s genetic risk profile

affects both her own and her offspring’s diabetes risk. Mother’s diabetes is not

affected by the respondent’s own education level or the respondent’s own diabetes

status. Thus, mother’s diabetes meets all three statistical criteria for a confounder.

With the statistical criteria, you would choose to adjust the analysis for mother’s

diabetic status.

What about the graphical criteria? Would conditioning on mother’s diabetes

block the back-door path between low education and diabetes? First, note that

there is one path between low education and diabetes, and mother’s diabetes is a

collider on that path. If we do not adjust for mother’s diabetes, it blocks the path

between our exposure and outcome. Adjusting for mother’s diabetes unblocks this
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path and induces a spurious statistical association between low education and

diabetes. Under the graphical criteria, one should not include mother’s diabetic

status as a covariate.4

The intuition here is very similar to the reasoning that pro-basketball play-

ers who are short will tend to be very fast. Assume that mothers developed dia-

betes owing either to a genetic predisposition or to experiencing poverty as adults

(while raising their children). There may be other reasons as well, but assume

these are two non-trivial determinants of a mother’s diabetic status. Consider

respondents whose mothers had diabetes but no genetic risk factors. These peo-

ple’s mothers likely developed diabetes owing to poverty, implying that the re-

spondents themselves grew up in poverty. Conversely, among respondents with

diabetic mothers who did not grow up in poverty, there is probably a genetic risk

factor. Conditional on mother’s diabetic status (for example, examining only those

whose mothers were diabetic), childhood poverty and genetic risk factors will

tend to be inversely related; individuals whose mothers did not carry a genetic

risk factor will tend to have grown up in poverty. Because of this association,

among people with diabetic mothers, low education will be inversely associated

with diabetes risk. If low education increases diabetes risk, adjusting for mother’s

diabetic status (under the assumptions in Figure 16.3) will underestimate this ef-

fect. Appendix 16.1 provides some example Stata code to generate data consis-

tent with the causal assumptions in DAG 3 in order to demonstrate this

phenomenon.
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4A variation on the statistical criteria can be used to determine whether, given a sufficient set

of covariates Z, it is possible to drop any variables from Z and still have a sufficient set for

identifying the effect of X on Y. Assume that the sufficient set Z consists of two subsets A and

B, and no variable in set A or set B is affected by either X or Y. It is unnecessary to adjust for

the variables in B, given the variables in A, if B can be broken into two disjoint subsets B1

and B2 (no variable in B1 can be in B2 and all variables in B must be in either B1 or B2) such

that 1) B1 is independent of X within strata defined by A and 2) B2 is independent of Y

within strata defined by X, A, and B1. The implications of these criteria are consistent with

the graphical criteria (Greenland et al. 1999). To apply this to the situation in Figure 16.3,

imagine that we know conditioning on W, Z1, and Z2 is sufficient to identify the effect of X on

Y. We would like to know whether conditioning on the empty set (call this set A; note that a

set of variables can be broken down into two sets—one empty and the other the same as the

original set) is sufficient. Now break set B (W, Z1, and Z2) into B1 (Z2) and B2 (W and Z1). Z2 is

marginally independent of X, meeting the first criteria above. Z1 and W are both indepen-

dent of Y within strata defined by X and Z2, meeting the second criteria. Thus, if we know

that conditioning on all three variables is sufficient, we can use these statistical criteria to

establish that conditioning on none of the three variables would also be sufficient. The result

might be more easily established using the graphical criteria, however.
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Why Sample Selection Threatens Internal Validity 
as well as Generalizability

Samples for observational epidemiologic studies are drawn using a variety of cri-

teria. For example, the sample may be drawn from members of a certain

occupation (for example, nurses, doctors, or nuns) or residents of a certain com-

munity (for example, Framingham or Leisure World Laguna Woods). The possi-

bility that such selection criteria might compromise generalizability is widely

recognized. What is sometimes overlooked, however, are the circumstances under

which selection criteria can affect internal validity. The sample selection process

may sometimes result in spurious statistical associations (that is, associations that

do not reflect causal relations between variables measured on the sample popula-

tion). This potential for bias is of special interest to social epidemiologists, because

some of the sample population selection rules use socially relevant characteristics.

On a DAG, we represent selection into the sample as a variable and say that all

analyses of a sample are conditioned on selection into that sample. That is, we con-

ceptualize selection as a variable with two values, zero � not selected and one �
selected; analyses are restricted to observations where selection � one. The value of

this selection variable may be influenced by any number of other variables, includ-

ing the exposure, the outcome, or other factors that influence the exposure or the out-

come (or both). Selection bias may occur if the likelihood of being admitted to the

sample depends on both the exposure and the outcome or their respective causes.

To take an extreme example, imagine a study of education’s effect on

Alzheimer’s dementia (AD). Suppose the eligibility criteria for the study are (1) col-

lege education or higher, or (2) memory impairment. Within the sample, you

find a strong inverse correlation between education and AD. In fact, everyone with

less than a college education has memory impairment (strongly associated with

AD), because otherwise they would not have been eligible for the study. All the

sample members with good memory turn out to have high education. Thus, in

this sample, higher education is associated with lower risk of AD. Obviously, this

is a completely spurious statistical relationship, induced by conditioning sample

membership on education and memory impairment. All analyses of the sample

are conditional on sample membership, and sample membership is a common ef-

fect of the exposure and outcome of interest. No matter what the causal relation

between education and Alzheimer’s, the statistical associations in the selected sam-

ple will differ substantially.

Note that the bias in this example was not a result of drawing a non-

representative sample from the “target population” and was not simply a problem
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of generalizability. Instead, this bias arises from how the target population is

defined, regardless of whether a representative sample is drawn from that target

population. One may well define the target population to be college graduates

or those with memory impairment and ask whether, for these people, education

protected against AD. Within this population, however, the statistical associations

between education and AD will not equal the causal relations.

This example is obvious because the selection criteria were direct measures

of the exposure and outcome. Selection may be more subtly related to factors that

influence exposure and outcome, however. Imagine that you choose to test the hy-

pothesis that education affects AD risk in a sample with selection based on mem-

bership in a high-prestige occupation. Achievement of a high-prestige occupation

is likely to be influenced by education, but many people with limited education

obtain prestigious jobs by virtue of native talent or intellect (or any number of

other explanations, but we will focus only on the intelligence factor). Some evi-

dence indicates that intelligence protects against diagnosis of AD (Schmand et al.

1997). Consider the DAG in Figure 16.4. In this DAG, S represents selection into

the sample (based on occupation), and it is influenced by X (representing educa-

tion) and U (intellect), which is itself a cause of Y (AD). Among the high-prestige

job holders, people with limited education are likely to have high intellect, whereas

those with low intellect are likely to have quite a lot of education. This is not to

say that everyone in the sample with extensive schooling will be dim or that all the

smart people will be high-school dropouts. The selection process will merely

bias the education–intellect association away from the association in the popula-

tion as a whole. The strength of the spurious association will depend on the de-

tails of the selection process, that is, how strongly education and intellect each

affect occupation and whether they interact in any way to determine occupation.

Note, however, that if high-education sample members are slightly less likely to

have high intellect than low-education sample members, this will increase the AD

risk of high-education sample members relative to the low-education sample
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members commensurately. Whatever the true causal relation between education

and AD, in a study of high-prestige job holders, that relation will tend to be un-

derestimated, unless it is possible to also condition on intellect. Alternatively, if the ef-

fect of intellect on AD is mediated entirely by some measured covariate, adjusting

for that covariate will eliminate the selection bias. This problem is not resolved by

using a longitudinal study design unless the effect of intellect on AD is mediated

entirely by some measured baseline variable.

Telling the story as in the preceding paragraphs is complicated and prone to

generating confusion, but analyzing the DAG is quite straightforward. Given the

DAG in Figure 16.4, we can see that S is a collider between X and U; X and U are

statistically associated conditional on S. Thus, conditional on S, X and Y are also

statistically associated, even under the assumption shown in this DAG that X has

no causal effect on Y (the null hypothesis). Note that whether selection exacerbates

or reduces bias in estimating a specific causal effect depends crucially on the causal

relations among variables determining selection. If we added an arrow from U to

X to the DAG in Figure 16.4, selection on S might reduce bias in estimating the

effect of X on Y. The relation between collider bias and selection bias is described

by Spirtes et al. (1993) and Pearl (1995) and explicated within the framework of

epidemiologic study designs by Hernán et al. (2004).

Survivor bias can be thought of as a special case of selection bias. In life-course

research on early life exposures and health in old age, a large fraction of the ex-

posed are likely to die before reaching old age, so survivor bias could be influential.

Effect estimates for many exposures–outcome combinations are larger among

the young and middle-aged than among the old (Elo and Preston 1996; Tate 

et al. 1998). An especially striking example of this phenomenon is the black–white

mortality crossover: mortality is greater for blacks and other disadvantaged groups

relative to whites at younger ages, but the pattern reverses at the oldest ages (Corti

et al. 1999; Thornton 2004). Does the diminishing magnitude of effect estimates

among the elderly indicate that the early life exposures become less important causes

of the outcome among the old? Not necessarily. Selective survival models show that

attenuated estimates among aged cohorts need not imply diminished effects

(Howard and Goff 1998; Mohtashemi and Levins 2002). In a selected group of

survivors to old age, observed coefficients for early life exposures may differ from

the causal coefficients in the following situations: (1) probability of survival is in-

fluenced by early life exposure and some other unmeasured factor, (2) the combined

effect of the unmeasured factor and early life exposure on survival is not perfectly

multiplicative, and (3) the unmeasured factor influences the outcome of interest.

This can occur even if the unmeasured factor is statistically independent of

exposure at birth (as in the numerical example) and thus would not be considered

a confounder.
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Consider a simple numerical example of this phenomenon (illustrated in

Figure 16.5). If interest is in how mother’s socioeconomic status (SES) affects one’s

stroke risk, and we enroll surviving members of the 1920 birth cohort when they

are age sixty, roughly 40 percent of the birth cohort will have died prior to

enrollment (Arias 2004). Suppose that those whose mothers had low SES were

twice as likely to die as those whose mothers had high SES. Furthermore, suppose

there is a “bad” gene, carriers of which have twice the chance of dying before age

sixty as non-carriers and also have twice the chance of incident stroke after

age sixty. Suppose that at birth, these two risk factors are independent and exactly

one-half the population are carriers of each (thus 25 percent of the population

are high-SES non-carriers, 25 percent are high-SES carriers, 25 percent are

low-SES non-carriers, and 25 percent are low-SES carriers). These factors are

perfectly multiplicative for death; that is, risk of death before age sixty for high-

SES non-carriers is 18 percent, risk of death for low-SES non-carriers is 36 per-

cent, risk of death for high-SES carriers is 36 percent, and risk of death for

low-SES carriers is 72 percent. Given this pattern of death, what are the associ-

ations among the survivors? The population, which was 25 percent of each risk

combination at birth, at age sixty is 34 percent high-SES non-carrier, 27 percent

low-SES non-carrier, 27 percent high-SES carrier, and 12 percent low-SES car-

rier. Thus, 44 percent of the high-SES group are carriers, whereas only 31 per-

cent of the low-SES group are carriers. Suppose high SES actually had no effect

on stroke risk after age sixty (that is, if, for everybody in the sample, had we in-

tervened to flip their mother’s SES, they would nonetheless have had the same

stroke outcome). Even under this assumption of no causal effect, we would ob-

serve that high-SES survivors had an elevated risk of stroke compared with low-

SES survivors. Although the spurious statistical association between SES and stroke

would vanish within strata of the gene, if the gene is unmeasured, the crude

association is biased. Whatever protection (or risk) having a high-SES mother

might have conferred against having a stroke after age sixty, it will be biased to-

ward looking harmful among the survivors (in this case, the bias is not very large).

This reasoning follows immediately from a causal DAG such as that in Fig-

ure 16.4, showing survival (S ) affected by mother’s SES (X ) and an unmeasured

risk factor (U) that also affects stroke (Y ). Although the numerical example here

makes high SES seem spuriously harmful, survivor bias can operate in either di-

rection, depending on how mother’s SES and the unmeasured risk factor com-

bine to affect survival (that is, whether there is interaction). The direction and

magnitude of the bias can be estimated under various assumptions about the

causal structure, although the assumptions needed are more detailed than those

shown in DAGs. In some cases, the plausible range of the bias may be too small

to be of concern, but this is not always the case.
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Why Handling Missing Data with Indicator Variables Is Biased
Even If the Data Are Missing Completely at Random

Even the best of studies are usually compromised by missing data. Often, the miss-

ingness comes here and there, scattered across a large percentage of the obser-

vations in the data set. Earl didn’t want to reveal his income, Esther was happy to

report her income but refused questions on sexual behaviors, Viola broke into tears

when asked about participation in community activities such as bridge, and the

medical record forms for twelve other sample members were lost. Several meth-

ods for handling missing data are available, many of which are unbiased under

some assumptions but biased under alternative scenarios (Greenland and Finkle

1995; Little and Rubin 1987). To many researchers, two goals are of preeminent

importance: (1) retain everybody in the study so there is still a good chance of get-

ting a statistically significant result, and (2) avoid a lot of extra work. A popular

approach to handling missing data that fulfills both goals is to create indicator vari-

ables for missingness on each variable (0 � observed, 1 � missing). The variable

in question is centered at its mean and all missing values are set to zero. In this

way, we can retain everybody in a regression analysis, even if they skipped one or

more items. As many a tired researcher has discovered, this approach is also pretty

easy to implement. But, we might well ask, does it produce the right answer? Sup-

pose we optimistically assume that the data are missing completely at random. In

other words, Viola’s shyness regarding social relations had nothing to do with her

actual social isolation or any other observed or unobserved characteristic of Viola.

The missing data are completely random with respect to exposure and outcome.

In this case, would using the missing indicator method to adjust for a putative

confounder provide an unbiased effect estimate?

Examine the DAG in Figure 16.6. We are interested in estimating the effect

of X on Y, and we recognize that it is important to adjust for Z, a common prior

cause of X and Y. Unfortunately, we do not have measures of Z for everyone in our

sample. When Z is missing, the variable Zms takes the value of 1; otherwise it is

0. Because the data are missing completely at random, there are no arrows point-

ing into Zms in the DAG. We define a new variable, Z *, that equals Z whenever Z

is observed and equals c (the mean value of observed Z ) everywhere else; Z * is

thus determined by both Z and Zms, and Z * is thus influenced by both Zms and

Z. Using the missing indicator method, we examine the statistical association

between X and Y conditional on Z * and Zms.

We can see from this DAG that conditioning on Z * does not block the back-

door path from X to Y via Z; Z * is correlated with Z, and that correlation is pro-

portional to the fraction of the sample with observed values of Z. If Z does in fact
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confound the association between X and Y, there will be residual confounding when

adjusting for Z *, and this residual confounding will be proportional to the frac-

tion of missing. A similar issue will arise in general when confounders are

mismeasured. The limitations of this approach to handling missing data are well-

demonstrated in the literature (Greenland and Finkle 1995; Little and Rubin 1987);

the DAG here is merely a device for clarifying the concepts. It is also clear from the

DAG that a complete case analysis, in which we condition on Z and consider only

observations where Zms � 0, is unbiased under these assumptions (that is, missing

completely at random). The DAG can be extended to consider alternative as-

sumptions about the determinants of missingness.

Why Adjusting for a Mediator Does Not Necessarily
Estimate the Indirect Effect

Heated arguments in social epidemiology often focus on questions of mediation.

Is the effect of sex on depression mediated by hormonal differences between men

and women or differences in social conditions? Are education effects on health in

old age mediated by credentials, cognitive differences, or behaviors? Is the

association between occupational status and heart disease attributable to

psychological consequences of low occupational status or material consequences

of low-paying low-status jobs? Mediation tests are crucial for identifying the paths

between social factors and health differences. We are often at somewhat of a loss

as to how to change the “fundamental” cause of the outcome, but have more

optimism that we could change a putative mediator, and the preferred policy
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response would obviously depend on the primary mediators. Implicitly, the ques-

tion of what mediates observed social effects informs our view of which types of

inequalities are socially acceptable and which types require remediation by social

policies. For example, a conclusion that women are “biologically programmed”

to be depressed more than men may ameliorate the social obligation to try to re-

duce gender inequalities in depression. Yet if people get depressed whenever they

are, say, sexually harassed—and women are more frequently sexually harassed

than men—this suggests a very strong social obligation to reduce the depression

disparity by reducing the sexual harassment disparity.

One definition of the direct effect of exposure X on outcome Y not mediated

by Z is the effect of X on Y when everyone in the population is forced to receive

the same level of Z. A slightly different definition of direct effects, which I adopt

here, is the effect of X on Y when everyone in the population is forced to re-

ceive the level of Z they would have received for a specific, constant level of X

(for example, if X were 0). The distinction between these definitions is important

when discussing the decomposition of a total effect into direct and indirect ef-

fects. For a discussion of alternative definitions and issues that arise when the ex-

posure interacts with the mediator, see (Kaufman et al. 2004; Robins and

Greenland 1992). Although it is possible that the direct effect of X on Y differs

depending on the value of Z, I assume for the remainder of this discussion that

it does not.

When Z is believed to partially mediate the effect of X on Y, a common approach

to quantifying the direct effect is to compare the regression coefficients for X predict-

ing Y in a model simultaneously adjusted for Z to the regression coefficients for X in

a model not adjusted for Z (Baron and Kenny 1986; Judd and Kenny 1981). That is:

(3)

Assuming that it is known that X affects Z, rather than that Z affects X, the

coefficient B1 is interpreted as the direct effect of X on Y. To calculate the medi-

ated effect, a second regression, unadjusted for Z, is estimated:

(4)

The contrast between g1 and b1 is interpreted as the portion of the effect

of X on Y that is mediated by Z. Clearly, this interpretation is not correct if Z is a

common prior cause of X and Y or to the extent that Z is measured with error. A

more subtle problem occurs if X affects Z but there are unmeasured common

causes of Z and Y. In this case, the approach described above does not generally

give correct estimates of either the direct or indirect effects of X on Y. These

E(Y ) � g0 � g1X

E(Y ) � b0 � b1X � b2Z
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unmeasured common causes may be completely unassociated with X; if they af-

fect both Z and Y they will nonetheless bias the estimate of the direct effect of

X on Y. This may be surprising because we are not used to considering carefully

whether our mediator covariates might have unidentified confounders with the

outcome.

The reason the standard approach to testing for mediation fails whenever the

putative mediator is confounded is immediately evident from the DAG in Fig-

ure 16.7. The variable Z is a common effect of X and U. Within levels of Z, X and

U become statistically associated, even if they were marginally statistically inde-

pendent, and this introduces a spurious statistical association between X and Y

within levels of Z. Whatever the causal relation between X and Y, when Z is held

constant the statistical association will reflect this causal relation plus the spurious

association via U.

We can describe this same phenomenon with an example. Suppose we are

interested in knowing whether the relation between education and systolic blood

pressure (SBP) is mediated by adult wealth (say, at age sixty). Unfortunately, we

do not have any measure of occupational characteristics, and it turns out that

having a high autonomy job promotes the accumulation of wealth and also lowers

SBP (perhaps owing to diminished stress). Returning to Figure 16.7, now X

represents education, Y represents SBP, Z represents wealth at age sixty, and U

represents job autonomy. To estimate the effect of education on SBP not medi-

ated by wealth, we need to compare the SBP in people with high and low

education if the value of wealth were not allowed to change in response to edu-

cation. For example, if we gave someone high education but intervened to hold

their wealth to the wealth they would have accumulated had they had low edu-

cation (but changed no other characteristics of the situation), how would SBP

change compared with giving the person less education? Unfortunately, we can-

not conduct such an intervention. The mediation analysis described previously

instead compares the SBP of people with high versus low education but who
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happened to have the same level of adult wealth. Overall, someone with high ed-

ucation will also tend to be wealthier than someone with low education. A high-

education person with the same wealth as a low-education person is likely to have

accumulated less wealth than expected for some other reason, such as a low au-

tonomy job. Thus, the mediation analysis will be comparing people with high ed-

ucation but low job autonomy to people with low education and average job

autonomy. If job autonomy affects SBP, the high-education people will seem to

be worse off than they would have been if they had average job autonomy. This

will in effect underestimate the direct effect of education on SBP. Under the tra-

ditional analysis plan, if we underestimate the direct effect, we will automatically

overestimate the mediated effect. This same phenomenon can be explained more

formally using counterfactual language. My point here is to note that with a causal

DAG, one can see quickly that adjusting for a confounded mediator will induce a

spurious association (which may be in either direction) between the primary ex-

posure and outcome.

This observation can be frustrating, because estimating mediation is so im-

portant in social epidemiology. In fact, it is so frustrating that researchers some-

times prefer to ignore the problem because, if honestly confronted, it seems to

render progress impossible. This is a mistake. First, the injunction that hypothe-

sized mediators be unconfounded in order to draw causal inferences is not any

more severe than the demand that primary exposures be unconfounded in order

to draw causal inferences. We accept the latter injunction without irritation.

Second, if the hypothesized mediators are confounded, we can conduct sensitiv-

ity analyses to understand our true uncertainty about the magnitude of the direct

or mediated effects. Cole and Hernán (2002) wrote an accessible discussion of this

problem walking through a numerical example. Blakely (2002), in a response to

Cole and Hernán, called for careful sensitivity analyses to determine whether sub-

stantial bias is introduced under realistic assumptions about the strengths of the

causal relations.

When Is an Alleged Natural Experiment Valid?

Observational epidemiologists are (or at least should be) constantly concerned that

they have not adequately measured and controlled for all common prior causes of

their exposure and outcome. For this reason, randomized experiments are strongly

preferred to observational studies for demonstrating causality (despite the many

other limitations of randomized trials). A randomized trial is represented in the

DAG in Figure 16.8. Here Z represents random assignment to treatment group.

We will ignore the variable W on this DAG for the moment. Random assignment
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affects treatment received (X), although it does not perfectly determine X because

some participants do not adhere to their assigned treatment. There are no causal

connections between Z and Y except via X. In the DAG, we show an unmeasured

variable U that confounds the association between X and Y, thus forcing us to

use the experimental design to test whether X affects Y. The crucial assumption

here is that, if we find that average Y differs by treatment assignment Z , this im-

plies that Z affects Y. If Z covaries with Y, this implies that X affects Y, because there

is no other possible pathway which would lead to an association between Z and

Y except the one via X.

Note that the causal assumptions for a valid trial may be met even if the re-

searcher did not assign the values of Z: the crucial assumption is simply that Z was

assigned in a manner otherwise unrelated to the outcome, and its association with

X is the only plausible reason it might predict Y. Various natural experiments may

fulfill this assumption. We may think that the day of the week one falls ill deter-

mines the quality of hospital care received, but there is no other reason for day of

illness to influence ultimate health outcomes. In this case, day of symptom onset

provides a natural experiment for the effect of quality of hospital care on out-

come. A similar idea using hour of birth as an instrument for postpartum length

of stay is developed in the study by Malkin et al. (2000). We may think that the

weather in the summer before a subsistence farmer’s child is born determines

the calories that child receives in his first year of life, but weather during that pe-

riod should have no other effect on the child’s health at age ten. Weather then pro-

vides a natural experiment for the effect of early caloric intake on later health. We

may believe that infants born in hospitals that provide lactation counseling to post-

partum mothers are more likely to be breastfed but that being born in such a

hospital has no other effect on child health. In this case, being born in a hospital

with lactation counseling provides a natural experiment for the effect of breast-

feeding on child health. We may believe that women whose mothers or sisters had
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breast cancer are unlikely to take hormone therapy at menopause but that having

relatives with breast cancer has no other causal link to cardiovascular disease risk.

If so, having female relatives with breast cancer is a natural experiment for the

effect of hormone therapy on cardiovascular disease.

These examples highlight the core criteria upon which putative natural

experiments must be assessed: is there any other reason for the treatment assign-

ment (that is, day of symptom onset, weather summer before birth, birth in a hos-

pital with lactation counseling) to influence the outcome besides via the exposure

of interest? For example, if we believe that hospitals with lactation counselors also

tend to provide better care in other respects, then we cannot attribute a difference

in health between children born at lactation-counseling or non-counseling hospi-

tals strictly to breastfeeding. The natural experiment is not valid. Data from nat-

ural experiments are often analyzed with an Instrumental Variables (IV) analysis,

in which treatment assignment is referred to as an instrument for the effect of

X on Y. Specifically, given a causal DAG, we say Z is a valid instrument for the

effect of X on Y if Z and X are statistically dependent and if every unblocked path

connecting Z and Y contains an arrow pointing into X. An IV effect estimate

can be calculated as the ratio of the relation between the instrument and the

outcome (the intent to treat effect estimate) and the relation between the instru-

ment and the treatment. To interpret this parameter, we assume that some people

would have been treated regardless of the value of the instrument, other people

would not have been treated no matter what value the instrument took, whereas

still a third group, sometimes called the cooperators, would receive the treatment

if and only if assigned to receive it by the instrument. We assume nobody in the

population is a contrarian (that is, receives treatment only if assigned not to receive

treatment and avoids treatment only if assigned to receive it). Under these as-

sumptions, the IV estimate provides a consistent estimate of the average effect

of receiving treatment on those who received the treatment owing to the value of

the instrument.

One interesting and somewhat surprising observation from the DAGs is that

an instrument need not directly affect exposure. In Figure 16.8, the relation

between W and Y may provide a valid test of the hypothesis that X affects Y

even though W does not itself directly affect X but rather shares a common

prior cause with X. Here Z affects both W and X, and they are thus statistically

associated. Neither W nor Z has any other pathways linking them to Y. If W

and Y are statistically associated, under these assumptions it implies that X af-

fects Y. Natural experiments and IV analyses are discussed in more detail in

chapter 17 of this book. For accessible discussions of the use of IV analyses

to estimate causal effects see (Angrist and Krueger 2001; Currie 1995; Green-

land 2000).

412 Methods in Social Epidemiology

c16.qxd  2/8/06  12:43 AM  Page 412



Using Causal Diagrams to Understand Common Problems in Social Epidemiology 413

FIGURE 16.9. CONDITIONING ON THE DEPENDENT VARIABLE.

Y

X

U

Y*

Why It Is a Mistake to Condition on the Dependent Variable

For various reasons, it may be appealing to examine relations between X and

Y within a certain range of values of Y. For example, one might want to know

whether the effect of education on mental status among individuals with below

average mental status is the same as the effect of education among individu-

als with above average mental status. Alternatively, one might suspect that the

outcome measurement available becomes increasingly unreliable at high levels

and therefore wish to exclude any high-scoring respondents from the analysis.

These decisions can introduce important bias into an analysis, and this can be

seen with a DAG such as that in Figure 16.9. In this DAG, we are interested in

the effect of X on Y; Y is also influenced by U, but U is statistically independent of

X. Under these assumptions, a simple analysis of the statistical relation between

X and Y (without statistical adjustment for any other covariates) gives an unbiased

estimate of the causal effect. Suppose however, that we condition on some values

of Y. Let us define a variable Y * that is one if Y is above a threshold value and zero

if it is below. Now we examine the relation between X and Y only among those

with Y * � 1. This turns out to have an undesirable consequence: X and

U are likely to be statistically associated among respondents with Y * � 1. As a

result, the statistical relation between X and Y will now be confounded by the effect

of U on Y (although the direction of confounding will not necessarily be the same

as the direction of the effect of U on Y ).

Let us consider the question of education’s effect on mental status, using

the mini-mental status exam (MMSE) as a measure of mental status. The

MMSE ranges from zero to thirty, and an MMSE score below twenty-four is

considered a clinically important threshold for impairment (Folstein et al. 1975).

Suppose we ask whether the effect of education on MMSE is the same for re-

spondents with MMSE equal to or above twenty-four as for respondents with

MMSE below twenty-four. We assume that MMSE score is influenced by edu-

cation and also influenced by intelligence (IQ), although IQ is unrelated to
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education (if IQ itself affects education, the analysis is obviously confounded,

but we make the optimistic assumption here that IQ does not affect educa-

tion). Thus, in the DAG in Figure 16.9, U represents IQ , X represents educa-

tion, Y represents MMSE, and Y * is an indicator for whether MMSE is above

twenty-four. In general, under this setup, we will underestimate the association

between education and MMSE in both strata of Y * unless we are able to si-

multaneously adjust for IQ. Among the high-functioning individuals (those with

high MMSE scores), those with low education are more likely to have unusually

high IQ. Among the low-functioning individuals, those with high education

are more likely to have unusually low IQ. Even though IQ and schooling are sta-

tistically independent in the population, they are inversely correlated within strata

of their common effect, MMSE. Note that the rules for drawing causal DAGs

described earlier in the chapter would not require that U in Figure 16.9 be

shown, because U is not a direct cause of more than one other variable in the

DAG. The rules for drawing causal DAGs specify what is required for the d-

separation rules to be applicable, but this phenomenon is not addressed by the

d-separation rules.

This phenomenon is also relevant when considering how to respond to an

artificial ceiling on the measurement of Y. One tempting but erroneous approach

is to drop all of the observations with ceiling values of Y. This is effectively

conditioning the analysis on the value of Y and will bias the statistical associa-

tion between X and Y. An important caveat is that the preceding discussion only

applies if X actually does affect Y. If X has no effect on Y, then Y is not a com-

mon effect of X and U. In this situation, conditioning on Y should not influence

the estimated relation between X and Y—it should be zero in every strata. This

finding is discussed in introductory econometrics texts, including Kennedy (1998)

and Wooldridge (2002), although it is not generally demonstrated with DAGs.

Why Adjusting for Baseline Values Can Bias Analyses 
of Change

Our final example of how DAGs can clarify otherwise confusing analysis decisions

relates to analyses of change. When the substantive question is whether an expo-

sure X, measured at baseline, affects changes in the value of Y over a follow-up time

period, an important analytic decision is whether to condition on the value of Y

as measured at baseline. This conditioning may take the form of restriction or

stratification, but most frequently the decision is whether to include Y at baseline

as an independent variable in a regression model. Let us take as a substantive

example the effect of exposure to violence (ETV) in early childhood on changes
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in depressive symptoms in adulthood. Suppose that adults at average age thirty

are enrolled, and depressive symptoms are assessed with the Centers for Epi-

demiologic Studies Depression scale at baseline (CESD1) and again after five years

of follow-up (CESD2). The CESD is a continuous scale ranging from zero to sixty,

in which higher scores indicate worse depressive symptoms (Radloff 1977). Our

(hypothetical) ETV measure is dichotomous and based on exposures before age

fifteen. At baseline, when respondents are average age thirty, ETV is associated

with higher average CESD scores. We would like to know if ETV also causes in-

creases in depressive symptoms over the five-year follow-up of adults. That is,

for any given person who was not exposed to violence in childhood, would her

change over the five-year follow-up period have differed had she in fact been

exposed to violence?

One possible analysis would be to estimate a baseline-adjusted change score

model using regression, where the CESD change score is the difference between

CESD at follow-up and CESD at baseline:

(5)

It has been shown elsewhere (Laird 1983) that the previous model provides

the same coefficient for ETV(g1) as does a lagged-effects model such as:

(6)

We will focus on whether the statistical analysis in equation (5) answers our

causal question, but keep in mind that if the analysis in equation (5) fails to answer

this question, estimation of equation (6) will also fail. Alternatively, we could es-

timate a change score model without baseline adjustment:

(7)

In either regression model a number of other covariates believed to directly

affect ETV and change in depressive symptoms might also be included. It turns

out that b1 and g1 are frequently quite different numbers, so they both cannot rep-

resent the “right” answer to a specific causal question. Figure 16.10 is a causal DAG

under which a baseline adjusted analysis (as in equation [5]) would give a positively

biased estimate of the effect of ETV on change in depression, but an unadjusted

analysis, as in equation (7), would give an unbiased estimate under the null. The

major conceptual point in this DAG is that CESD is an imperfect measure of a la-

tent construct: depressive symptoms. The CESD score is influenced both by true

underlying depression and by some error in measuring that depression. This re-

flects the well-documented finding that the CESD scale has imperfect reliability

(McDowell and Newell 1996). The phenomenon in the following description could

also occur because of instability in the construct of depression, but that is outside

CESD2 � CESD1 � b0 � b1ETV � ei

CESD2 � g0 � g1ETV � g*
2 CESD1 � ei

CESD2 � CESD1 � g0 � g1ETV � g2CESD1 � ei
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the scope of this discussion. Because ETV and CESD1 are correlated and ETV

is temporally prior to CESD1, we assume that ETV affects baseline depressive

symptoms. Over the five-year follow-up, some true change in depressive symptoms

will occur. We are not privy to the true change, but we will observe the change in

CESD scores, which is strongly influenced by true change. Unfortunately, the

change in CESD scores is also influenced by the error in measuring CESD at base-

line. If the baseline error was positive, the CESD change score will tend to be neg-

ative, purely due to regression to the mean. If the baseline error was negative,

regression to the mean will tend to push the change score in a positive direction.

The error in measuring CESD2 will also influence the change score, and if the two

errors are perfectly correlated, there will be no regression to the mean; however,

psychometric assessments of the CESD scale indicate substantial measurement

error that is uncorrelated across time periods. This is the reasoning for drawing the

DAG as we did in Figure 16.10. Under these assumptions, if ETV has no effect on

change in depression during the follow-up period, ETV and change in CESD score

will be statistically independent: the b1 estimated in equation (7) is unbiased. The

only path in the diagram connecting ETV and change score (ETV—Depression1

—CESD1—error1—CESD change score) is blocked by CESD1 (a collider). Thus,

analyses not adjusted for CESD1 provide unbiased estimates of the overall (that is,

total) effect of ETV on change.

Conditional on CESD1, however, ETV and CESD change score are spuri-

ously correlated, because conditioning on CESD1 “unblocks” the previously de-

scribed path. The intuition is just as with the previous examples of conditioning

on common effects. Anyone with a high CESD1 has either severe baseline de-

pression symptoms (high depression1) or large positive measurement error1 (or

both). A person without depression who has a high CESD1 must have a positive

416 Methods in Social Epidemiology

FIGURE 16.10. AN EXAMPLE WHEN BASELINE ADJUSTMENT BIASES 
ANALYSES OF CHANGE.

ETV Depression1

CESD1

Measurement
Error1

Change in Depression
Time 1 to Time 2

CESD Change Score
Time 1 to Time 2

Measurement
Error2

c16.qxd  2/8/06  12:43 AM  Page 416



error1. If a person with severe depressive symptoms scores a low CESD1, error is

negative. Thus, within levels of CESD1, depression1 and error1 are inversely corre-

lated, and ETV and error1 are inversely correlated. Because error1 contributes

negatively to change score, change score and error1 are negatively correlated, an

example of the regression to the mean phenomenon. Hence, conditional on

CESD1, ETV and CESD change score are positively correlated. Therefore

baseline-adjusted ETV coefficients are positive, even when ETV does not affect

change in depressive symptoms. The spurious correlation is proportional to the

error in the CESD measure and the strength of the ETV-CESD1 relationship.

This finding has been demonstrated mathematically (Yanez et al. 1998) and with

an applied example (Yanez et al. 2002). The issue is discussed in more detail using

DAGs in (Glymour et al. 2005).

Caveats and Conclusion

Directed acyclic graphs do not convey information about important aspects of

the causal relations, such as the magnitude or functional form of the relations

(for example, linearity, interactions, or effect modification). This can be frus-

trating because not all biases are created equal, and it would be nice to estab-

lish which ones can safely be ignored. For example, Greenland (2003) compares

the likely bias introduced by adjusting for a collider with the bias that would re-

sult from failing to adjust for a common prior cause. His findings suggest that, if

the collider is not a direct effect of the exposure and the outcome, one might pre-

fer to adjust on the grounds that the bias potentially introduced by failing to ad-

just for the variable is likely to be larger than the bias potentially introduced by

mistakenly adjusting for it. Exploring the magnitude of potential biases under

a range of assumptions is invaluable, and there are many approaches to doing

this. One option is to generate simulated data sets based on DAGs, for example

as in the simple code in Appendix 16.1. More sophisticated simulations can be

conducted in many statistical packages, including freeware available online

(TETRAD, 2005)5.

Drawing a DAG that adequately describes our prior beliefs or assumptions is

sometimes difficult. To the extent that using DAGs forces greater clarity about
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based on assumptions in structural equation models without specifying programming code.
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assumptions, this seems advantageous. Though it may seem an impossible task

to draw a “true” DAG, to the extent that we are uncertain about how to specify the

DAG, we should also be uncertain about the causal interpretation of our statistical

tests.

Directed acyclic graphs are a convenient device for expressing ideas ex-

plicitly and understanding how causal relations translate into statistical relations.

Causal DAGs provide a simple, flexible tool for thinking about many epidemi-

ological problems. My goal in this chapter was to demonstrate how an array of

apparently disparate problems in epidemiologic reasoning can be expressed and

resolved with causal DAGs. This is part of the remarkable convenience of

learning the d-separation rules. Rather than considering each case of a poten-

tial bias as a separate problem and struggling for the “right” answer, DAGs help

provide a unified way of evaluating a potential analysis plan for any specific

question of interest and set of causal assumptions. Although in some cases

the issues raised are especially pertinent in research on social determinants of

health, these problems are by no means limited to social epidemiology. The last

two decades of progress on causal inference, of which the use of causal DAGs

is only a part, has the potential to substantially enhance applied epidemiologic

work, and these improvements may be especially beneficial in social and life-

course epidemiology.

APPENDIX 16.1

The following Stata commands create a data set with five normally distributed

variables: W, X, Y, Z1, and Z2. Variable Z1 affects X and W; Z2 affects W and Y.

There are no other causal relations between variables (for example, we assume the

null hypothesis that X has no effect on Y ). This is the same causal structure as

shown in Figure 16.3, although all variables are assumed to be continuous. Under

these assumptions, W meets conventional statistical criteria for a confounder but

not the graphical criteria. As shown in the two regressions, conditioning on W

induces a negative statistical association between X and Y.

Manipulating the path coefficients can illustrate how the size of the bias

induced by adjustment for W depends on the strength of these relations. Please

note that several assumptions about the causal structure are implicit in the fol-

lowing code but not encoded in the corresponding DAG. For example, the code

specifies linear and additive causal effects. The DAG encodes no such assumptions

and would thus be consistent with other specifications. The magnitude of the bias
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induced by conditioning on W is sensitive to these assumptions about functional

form.

set obs 10000
* Generate constants that determine the magnitude of
the causal effects (that is, path coefficients).
gen Z1toX = 1
gen Z1toW = 1
gen Z2toW = 1
gen Z2toY = 1
* Generate Z1 and Z2 as normally distributed random
variables.
gen Z1 = invnorm(uniform())
gen Z2 = invnorm(uniform())
* Generate random components for all other variables:
W, X, and Y
gen W_random = invnorm(uniform())
gen X_random = invnorm(uniform())
gen Y_random = invnorm(uniform())
* Generate W as a function of Z1, Z2, and a random
component
gen W = Z1toW*Z1 + Z2toW*Z2 + W_random
* Generate X as a function of Z1 and a random component
gen X = Z1toX*Z1 + X_random
* Generate Y as a function of Z2 and a random component
gen Y = Z2toY*Z2 + Y_random
* Describe the data generated means
corr W X Y Z1 Z2
* Run regressions with and without adjustment for W to
estimate the effect of X on Y.
reg Y X
reg Y X W
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