APPENDIX vedr. SPSS Faculty of Health Sciences svarende til diverse slides. ► To-gange-to tabeller, s. 3 **Basal Statistik** Plot af binære data med loess-udglatning, s. 4 Logistisk regression mm. ► Logistisk regression, s. 5-7 ▶ Modelkontrol, s. 8-10, 14 ▶ Diagnostics, s. 11 Lene Theil Skovgaard ► Alternative links. s. 12-13 25. marts 2019 ▶ Ordinale data, s. 15-16 ► Tælletal, s. 17-20 1/202 / 20 DEPARTMENT OF BIOSTATIST

To-gange-to tabeller

Slide 7-10

Da vi ikke har individ-data, men en kolonne med antal, skal vi lave en vægtet analyse. Der benyttes

Data/Weight Cases/, afkrydses i Weight cases by, hvorefter antal flyttes over i Frequency Variable.

Herefter tabelanalysen i

Analyze/Descriptive Statistics/Crosstabs, hvor gender sættes i Row(s) og farveblind sættes i Column(s).

Det er vigtigt, hvad der er rækker og søjler

Herefter går man i Statistics og afkrydser Chi-square og Risk samt i Cells, hvor man afkrydser Expected samt under Percentages: Row

Figurer

Slide 13

Benyt Graph/Chart Builder/Scatter/Grouped Scatter, sæt infektion i Y, alder i X og over2timer i Set color. Herefter OK, hvorved figuren fremkommer uden udglattet kurve.

For at lægge den udglattede kurve på ser det ud til at være nødvendigt først at lave variablen infektion om til en scale-variable, hvis den ikke var det i forvejen. Dette gøres i Variable View. Når man så laver grafen, kan man efterfølgende dobbeltklikke på den, klikke Add Fit Line at Subgroups, afkrydse Loess og Apply/Close.

Det kommer dog ikke helt til at ligne den tilsvarende SAS-figur

Logistisk regression i SPSS

Slide 23-24

For at lave den logistiske regression benytter vi Analyze/Regression/Binary Logistic, hvor vi sætter infektion som Dependent, begge forklarende variable (alder og over2timer) i Covariates.

Herefter går vi ind i Categorical Covariates og sætter over2timer ind her, da den ikke indeholder numerisk information. Her kan man vælge, om referencen skal være første eller sidste kategori. Vælg f.eks. First og klik Change/Continue.

Herefter går vi ind i Options og afkrydser CI for $\exp(\beta)$.

Andre metoder til logistisk regression

Slide 23-24

Der finde i SPSS en meget generel indgang til analyse af mange forskellige slags data, nemlig Generalized Linear Models, hvor man skal udfylde en del faneblade (dem foroven i det grå felt)

Først udfylder man på indgangssiden, hvor man afkrydser Custom, vælger Binomial under Distribution og Logit under Link function.

Derefter benyttes de andre faneblade:

Response: Her sættes infektion ind under Dependent Variable, og under Reference category vælges First (lowest value), fordi dette bevirker, at vi vurderer udfald 1 mod udfald 0, altså risikoen for at få en infektion, ikke for at gå fri af en infektion.

6 / 20

NIVERSITY OF COPENHAGE

5/20

Andre metoder til logistisk regression, II

Slide 23-24

Fortsættelse af faneblade fra s. 6

- Predictors: Her sættes alder i Covariates og over2timer sættes i Factors (og her kan man i Options afkrydse descending under Category Order for Factors for at få 0 som reference.
- Model: Her sættes begge variable ind som Main Effects Senere også som Interaction
- Statistics: Afkryds
 Include exponential parameter estimates

Goodness of fit

Slide 36-38

l opsætningen af den logistisk regressionsanalyse (se s. 5) benyttes Options, hvor man afkrydser Hosmer-Lemeshow Goodness-of-fit

DEPARTMENT OF BIOSTATISTI

Check af linearitetsantagelsen for alder

Slide 39-42

 Alderseffekt modelleret med både alder og ln(alder) (output s. 39-40). Definer:

lnalder50=ln(alder)/ln(1.1)-ln(50)/ln(1.1);
og indsæt denne variabel i Covariate(s) sammen med de
øvrige, se s. 5

Alderseffekt modelleret som lineær spline (output s. 41-42): Definer alder_over60=(alder>60)*(alder-60) og alder_over75=(alder>75)*(alder-75) og indsæt denne variabel i Covariate(s) sammen med de øvrige, se s. 5

Plot af standardiserede residualer

Slide 43

Modellen er den på s. 23, og i opsætningen af den logistiske regression (se s. 5 her i appendix), og man gemmer diverse størrelser ved at klikke Save og afkrydse de ønskede størrelser, f.eks. Predicted probabilities, Cook's, Standardized residuals og DfBeta(s)

Datasættet indeholder nu disse ekstra størrelser, så man kan nu selv styre plottene ved at benytte Graph/Chart Builder/Scatter/Grouped Scatter

Slide 44

10/20

Plot af kumulerede residualer synes *ikke* at være tilgængeligt i SPSS

9 / 20

NIVERSITY OF COPENHAGEN

Diagnostics

Slide 46-47

Modellen er den på s. 23 (øverste del), se vejledning her i appendix, s. 5, hvor vi har yderligere har gemt diverse størrelser ved at klikke Save og afkrydse de ønskede størrelser, her Cook's, og DfBeta(s), se s. 10

Ud fra det udbyggede datasæt kan man nu selv styre plottene ved at benytte Graph/Chart Builder/Scatter/Grouped Scatter, hvor man sætter enten cook eller DfBetas i Y, alder i X og over2timer i Set color. Herefter OK, hvorved figuren fremkommer uden udglattet kurve.

For at lægge kurver på, se s. 4

Relativ risiko for farveblindhed

Slide 51-52

Da vi ikke har individ-data, men en kolonne med antal, skal vi lave en vægtet analyse. Der benyttes Data/Weight Cases/, afkrydses i Weight cases by, hvorefter antal flyttes over i Frequency Variable.

Risk Ratio (relativ risiko) estimeres ved at benytte log-link, og vi må derfor benytte den generelle metode Generalized Linear Models, (se s. 6-7), men hvor man denne gang vælger Log under Link function.

Test for trend

Modelkontrol af lineariteten, kejsersnit

Slide 55-56

Her benytter vi Generalized Linear Models, hvor man afkrydser Custom, vælger Binomial under Distribution og Identity under Link function.

Under Response sættes kejsersnit over i Dependent Variable, og der afkrydses i Number of events occurring in a set of trials samt i Variable, hvor man så sætter total over i Trials Variable. Under Predictors sættes skonummer i Covariates og ellers fortsættes som s. 6-7.

Slide 57-58

Check af linearitet kan foretages ved at lave en kopi af skonummeret: Benyt Transform/Compute og definer skostr=skonummer.

l modellen fra s. 14 tilføjes nu skostr som Factor, og under Statistics/Chi-square Statistics skiftes fra Wald til Likelihood Ratio.

Proportional odds model

Slide 66-67

Logistisk regression for hver tærskel, med samme afhængighed af kovariaterne, som her alle er \log_2 -transformerede.

Dette udføres nemt i SPSS ved at benytte Analyze/Regression/Ordinal, hvor vi sætter degree_fibr som Dependent og alle 3 forklarende variable (lha, lpiiinp og lykl40) i Covariates.

For at få tilbagetransformeret til Odds Ratio'er, er man nødt til at benytte Generalized linear models (se s. 6-7), hvor man vælger Ordinal Response og videre Ordinal logistic

Proportional odds model, fortsat

Slide 66-67

For at få et test for *proportional odds*, går vi ind i Output og afkrydser Test of parallel lines. Herved får vi dog ikke helt det samme, da SPSS laver et Likelihood Ratio test, mens SAS laver det som et *score*-test.

Man kan endvidere afkrydse Estimated response probabilities og Predicted category

Poisson analyse

Slide 81-82

Vi skal her igen benytte Analyze/Generalized Linear Models/Generalized Linear Models hvor man går videre med Counts/Poisson loglinear. Herefter udfylder man fanerne således	Slide 84-85
Response: total sættes i Dependent Variable Predictors: gender sættes i Factor og years_from_2004 sættes i Covariates	Korrektion for overspredning foregår ved at afkrydse Robust estimator under Estimation. Ellers helt som s. 17
Model: husk interaktion her, hvis den skal med	
Estimation: giver mulighed for overspredning i modellen, hvis man afkrydser Robust estimator	
Statistics: Afkryds	
Include exponential parameter estimates	
17 / 20	18 / 20
ERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATI	ISTICS UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTI

Normalfordelingsmodel for tælletal

Slide 86

her benytter vi logaritmetransformerede data
(logtotal=lg10(total)):

og derefter blot Analyze/General Linear Model/Univariate, hvor vi sætter logtotal i Dependent Variable, gender i Fixed Factor(s) og years_since_2004 i Covariate(s)

For at undgå at få interaktionen med i modellen, klikkes nu på Model, hvorefter man vælger Custom, markerer begge kovariater, skifter fra Interaction til Main Effects og klikker på pilen og Continue.

Husk også i Options at vælge Parameter Estimates

Opdelte plot (panels)

Poisson analyse

Slide 88

Benyt Graph/Chart Builder/Groups/Point ID, afkryds Rows panel variable og sæt gender ind i denne, og sæt nu antal i Y, years_from_2004 i X og age i Set color. Herefter OK

Slide 89

Benyt Graph/Chart Builder/Groups/Point ID, afkryds Rows panel variable og sæt year ind i denne, og sæt nu antal i Y, age i X og gender i Set color. Herefter OK

