
SAS language elementaries

Use of SAS
March 2009



SAS is a programming language

• A program is a “recipe”: A series of instructions to be executed

in a specified sequence

• Notice: SAS is not a spreadsheet. Output is output, and does

not change automatically if data are changed

• Some rules and conventions are necessary for SAS to be able to

interpret its instructions

• Separators (semicolon, /)

• Parentheses and quote symbols must be matched

1



A simple SAS program

data new; |

set original; |

age=1997-birthyr; | Data Step

bmi=weight/(height*height); |

run; |

proc print data=new; |

var id age bmi; |

run; |

| Proc Steps

proc means data=new; |

var age bmi; |

run; |

2



DATA steps and PROC steps

• Roughly speaking, SAS programs consist of two kinds of steps

(= blocks of instructions):

• DATA steps define datasets. E.g. by reading raw data,

computing transformed variables, selecting cases, etc.

• PROC steps contain standard procedures that operate on

datasets. You can’t, e.g., transform variables in a PROC step.

• Normal arrangement of a SAS program is to put DATA steps

at the beginning, but they can occur intermixed

• There are a a few SAS statements in addition to the DATA and

PROC steps. They typically set up definitions for later use:

LIBNAME, OPTIONS, AXIS, and SYMBOL statements are

the most common ones

3



Basic things about the SAS language

• Almost everything starts with a keyword and ends with

semicolon (exception being that there is no keyword before

computations in a DATA step)

• Statements are pieces of code separated by semicolon

OPTIONS ls=80;

PROC GPLOT data=sasuser.fitness;

PLOT maxpulse * age;

RUN;

PROC GLM data=sasuser.fitness;

MODEL maxpulse = age / solution;

RUN;QUIT;

• Keywords: OPTIONS PROC PLOT MODEL RUN QUIT

• Some statements belong together in blocks (steps).

4



Things to notice

OPTIONS ls=80;

PROC GPLOT data=sasuser.fitness;

PLOT maxpulse * age;

RUN;

PROC GLM data=sasuser.fitness;

MODEL maxpulse = age / solution;

RUN;QUIT;

• The slash symbol (/) is often used to introduce options for a

statement

• Separators like semicolons and slashes are necessary to avoid

ambiguity: solution is not a variable name, run is not an

option.

• SAS detects the end of a step when there is a new DATA or

PROC statement (RUN is not always needed).

5



Formatting of code

• SAS generally doesn’t care about whitespace and line breaks

data

work.cohort;

set course.males98;

run;

• is the same as

data work.cohort; set course.males98; run;

• Good practice is to have at most one statement per line.

6



Indentation

• Enhances readability considerably. (You will have to read your

own old code!)

• DATA and PROC steps are entered starting at the left edge.

Likewise OPTIONS statements and RUN and QUIT.

• Any subordinate statements are indented by 2-4 blanks

• In statements which do not fit on one line, subsequent lines are

also indented.

• This creates visual groups, so that you can easily see where one

thing ends and the next begins.

7



Example of good indentation

data new;

set original;

age=1997-birthyr;

bmi=weight/(height*height);

run;

proc print data=new;

var id age bmi;

run;

proc means data=new;

var age bmi;

run;

8



Ingredients of a DATA step

data new;

set original;

age=1997-birthyr;

bmi=weight/(height*height);

run;

• Specification line (name of new data set)

• Data source (here: name of old SAS data set)

• Computation

• Assignment

9



Variables

• Columns of a dataset

• Can be numerical (usual case)

• – or character (text strings)

• Values of a character variable are given in quotes: ’male’ or

"male"

• A dot (.) denotes a missing value for a numerical variable and

is the lowest number in SAS.

• Calculations involving a missing will result in a missing (most

of the times)

• A ”” or ” denotes a missing value for a character variable.

10



Names of variables

• SAS is case-insensitive (SEX, sex, Sex all refer to the same

variable)

• Names can be up to 32 characters long (older SAS: max 8)

• Names can consist of (english) letters, numbers and underscore

(_)

– but can not start with a number

11



Comments

Two ways of making comments in SAS programs:

/* Comments */

* Comments ;

Example:

/* Here I make a new data

with new variables age and bmi*/

data new;

set original;

age=1997-birthyr;

bmi=weight/(height*height);

run;

*Here I print age and bmi;

proc print data=new;

12



var id age bmi;

run;

*Here I calculate means;

proc means data=new;

var age bmi;

run;

13


	Introduction to SAS programming

