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Example: Obesity and blood pressure

libname other ’p:\sas\data\other’;

proc print data=other.bp;

var sex obese bp;

run;

Obs sex obese bp

1 male 1.31 130

2 male 1.31 148

3 male 1.19 146

. . . .

. . . .

101 female 1.64 136

102 female 1.73 208
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Correlation

Is obesity related to blood pressure?

proc corr in SAS:

• Default is the parametric correlation, based on the bivariate

normal distribution

also denoted as the Pearson correlation

• The Spearman correlation is the most commonly used

nonparametric rank correlation

• The Kendall correlation is an alternative rank correlation
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Correlation measures the strength of the (linear) association

between two variables

The correlation coefficient is calculated as:

r = rxy =
Sxy

√

SxxSyy

=

∑n

i=1 (xi − x̄)(yi − ȳ)
√

∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2

• takes on values between -1 and 1

• 0 corresponds to independence

• +1 and -1 correspond to perfect linearity

positive resp. negative
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Correlations in SAS

proc corr data=other.bp pearson spearman;

var bp obese;

run;

Pearson Correlation Coefficients, N = 102

Prob > |r| under H0: Rho=0

bp obese

bp 1.00000 0.32614

0.0008

obese 0.32614 1.00000

0.0008

Spearman Correlation Coefficients, N = 102

Prob > |r| under H0: Rho=0

bp obese

bp 1.00000 0.30363

0.0019

obese 0.30363 1.00000

0.0019
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Scatter plot
In raw form:

proc gplot data=other.bp;

plot bp*obese;

run;

This plot can be improved a lot....
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Linear regression

• Y: Response variable, outcome variable, dependent variable

(here bp)

• X: Explanatory variable, independent variable, covariate (here

obese)

Data: Bivariate observations of X and Y for a series of individuals

or ’units’:

(xi, yi), i = 1, · · · , n
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The equation for a straight line: Y = α + βX

Interpretation:

• α: intercept, (intersection with Y -axis)

The blood pressure for an individual with obesity 0.

Often an illegal extrapolation.

• β: slope, regression coefficient

The difference in blood pressure for two individuals with a difference in obesity

of 1

Often the parameter of interest.
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The simple linear regression model

Yi = α + βXi + εi, εi ∼ N(0, σ2) indep.

Estimation is performed using least squares method:

Determine α and β, to minimize

P

n

i=1
(yi − (α + βxi))

2 =
P

n

i=1
ε2

i
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Regression in SAS

proc reg data=other.bp;

model bp=obese;

run;

The REG Procedure

Model: MODEL1

Dependent Variable: bp

Number of Observations Read 102

Number of Observations Used 102

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3552.41931 3552.41931 11.90 0.0008

Error 100 29846 298.45541

Corrected Total 101 33398

Root MSE 17.27586 R-Square 0.1064

Dependent Mean 127.01961 Adj R-Sq 0.0974

Coeff Var 13.60094
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Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 96.81793 8.91960 10.85 <.0001

obese 1 23.00135 6.66701 3.45 0.0008

Interpretation

The estimated relation is

bp = 96.8 + 23.0 × obese

Interpretation: When obese increases with one unit, bp will increase

with 23.0 units

One unit obese increase in obese is a lot

Alternative interpretation:

When obese increases with 0.1 units, bp will increase with 2.3 units
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Add a regression line to the plot

proc gplot data=other.bp;

plot bp*obese;

symbol1 v=circle i=rl l=33;

run;

i=rl gives the regression line - l=33 dotted line
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The variance around the regression line

σ2 is estimated as

s2 =
1

n − 2

n
∑

i=1

(yi − α̂ − β̂xi)
2

can be found in the output as

mean square error, here 298.5

Standard error around the regression line

(sometimes - somewhat misleadingly - denoted ’residual standard

error’)

here root mean square error

s =
√

s2 = 17.28

It has the same units as the original outcome variable and is

therefore easier to interpret than the variance.
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Confidence limits

• confidence limits by hand:

β̂ ± t97.5%(n − 2) × se(β̂)

= 23.001 ± 1.984 × 6.667 = (9.774; 36.229)

use the option clb in SAS:

proc reg data=other.bp;

model bp=obese / clb;

run;
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 96.81793 8.91960 10.85 <.0001

obese 1 23.00135 6.66701 3.45 0.0008

Parameter Estimates

Variable DF 95% Confidence Limits

Intercept 1 79.12169 114.51417

obese 1 9.77420 36.22851
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Confidence interval for regression line

proc gplot data=bp;

plot bp*obese;

symbol1 v=circle i=rlclm95 l=1;

run;

i=irclm95 gives confidence limits
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Assumptions in linear regression

• Linearity in the mean value

• Independence between error terms εi

• Normally distributed error terms, εi ∼ N(0, σ2)

• Variance homogeneity, i.e identical variances for all εi’s

The last two assumptions are not quite fulfilled here, so we try a

logarithmic transformation of the outcome:

data bp;

set other.bp;

lbp=log10(bp);

run;
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After the logarithmic transformation of blood pressure:

Is the relationship still linear?
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Regression coefficents - log-transformed outcome

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.99956 0.02857 69.99 <.0001

obese 1 0.07636 0.02136 3.58 0.0005
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Interpretation - log-transformed outcome

The estimated relation is

log10(bp) = 2.000 + 0.0764 × obese

Interpretation: When obese increases with one unit, log10-bp will

increase with 0.0764 units

This can be back-transformed to the original scale:

• log10(Y2) − log10(Y1) = 0.0764 ⇒
Y2/Y1 = 100.0764 = 1.19

Thus, an increase of 0.0764 in lbp corresponds to an 19%

increase in bp

Conclusion: a one unit increase in obese results in a 19% increase

in bp
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Log-transformation of both variables

The relationship between log-bp and obese seemed not to be linear

so we also transform the covariate

data bp;

set other.bp;

lbp=log10(bp);

lobese=log10(obese);

run;

proc gplot;

plot lbp*lobese;

symbol v=circle i=rl c=BLACK l=33 w=2;

run;
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Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

intercept 1 2.073139 0.00935900 221.513 0.0001

lobese 1 0.241193 0.06850116 3.521 0.0006

21



Interpretation of log-log-realtionship

The estimated relation is

log10(bp) = 2.073 + 0.241 × log10(obese)

Interpretation: When log10-obese increases with one unit,

log10-lbp will increase with 0.241 units

This can be back-transformed to the original scale:
• log10(X2) − log10(X1) = 1 ⇒

X2/X1 = 101 = 10

Thus, a one unit increase in lobese corresponds to a 10-fold increase in obese

• log10(Y2) − log10(Y1) = 0.241 ⇒

Y2/Y1 = 100.241 = 1.74

Thus, an increase of 0.241 in lbp corresponds to a 74% increase in bp

Conclusion: a 10-fold increase in obese results in a 74% increase in

bp

A 10-fold increase in obese is unrealistic. If I want to look at the

effect of a doubling, I would use LOG2 (instead of LOG10).
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Exercise: Regression and graphics I

Consider again the Juul data. In this exercise we want to study the

effect of age on the SIGF1-level.

1. Get the data into SAS using a libname statement.

2. Create a new data set containing only prepubertal children

(Tanner stage 1 and age > 5).

3. Use PROC GPLOT to plot the relationship between

log(SIGF1) and age for prepubertal children.

4. Use PROC REG to do a regression analysis of log(SIGF1) vs.

age for prepubertal children.

5. Also do the untransformed analysis, i.e., SIGF1 vs age. Are the

modelling assumptions satisfied?
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Scatter plots in SAS: PROC GPLOT
In the raw form:

proc gplot data=bp;

plot bp*obese;

run;

more code can give nicer output:

proc gplot data=bp;

plot lbp*lobese=sex

/ haxis=axis1 vaxis=axis2 frame;

axis1 value=(H=2)

minor=NONE

label=(H=3 F=swissbe ’log10(obese)’);

axis2 order=1.95 to 2.35 by 0.05

length=12 cm

value=(H=2)

minor=NONE

label=(A=90 R=0 H=3 F=swissbi ’log10(bp)’);

symbol1 v=dot i=rl c=BLACK l=1 w=2;

symbol2 v=circle i=rl c=BLACK l=33 w=2;

title1 F=cscript h=3 ’obesity and blood pressure’;

run;

we have included statements on: ’axis’, ’symbol’ and ’title’
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Plotting symbol depend on sex

Achived with the statement

plot lbp*lobese=sex

Females gets the firts plotting symbol (symbol1)

Males gets the second plotting symbol (symbol2)

You have to define the symbols
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Symbol statements

One symbol statement for each group

(each value of sex)

Options:

• v=circle: plotting symbol: circle/dot/star

• h=2: the size of the plotting symbol

(default 1)

• i=none: interpolation method:

none/join/rl/rlcli95/rlclm95

• c=black: color of points: black/red/blue

• l=1: line type,

1:solid, 2-46: different dashings
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Plotting symbols

’v= ’ in symbol statements
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Interpolation methods

’i= ’ (or ’interpol= ’) in symbol statement

• i=none: data points not connected

• i=rl: fits a regression line

• i=rq: fits 2. degree polynomium

• i=spline: fits ’smooth’ curve to the points

• i=join: data points connected with straight lines (first sort

data)
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Interpolation methods, more information

’i= ’ (or ’interpol= ’) in symbol statements
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Line types

’l= ’ in symbol statements
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AXIS specifications

• haxis=axis1 vaxis=axis2: horizontal axis is axis1 and vertical axis

is axis2. axis1 and axis2 must be specified.

• length=12cm: the length of the axis

• value=(h=2): the size of the digits on the axis

• minor=9: number of tickmarks between the numbers, may be set to

none

• label=(A=90 R=0 h=2 ’text’) specifies the axis text, the size of

this,

and its direction

– A=90: The whole text has to be rotated 90 degrees

counterclockwise, so that it fits the Y axis

– R=0 this may make the letters slant

• order=(0 to 10 by 1) specifies the desired numbers on the axis
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Fonts in SAS

’f= ’ in symbol, axis or title
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Histograms in SAS

proc univariate data=bp;

var lbp;

class sex;

histogram / cfill=gray

endpoints=1.9 to 2.3 by 0.1 normal;

inset mean std skewness / header=’descriptive’;

run;

histogram: gives a histogram for variable lbp

cfill=gray: bars are gray

class sex: histogram for both values of sex

endpoints=1.9 to 2.3 by 0.1: numbers on x-axis

normal: the best fitting normal curve is included

inset mean std skewness / header=’descriptive’: header is included
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PROC UNIVARIATE with HISTOGRAM
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Probability plots

proc univariate data=bp;

var lbp;

class sex;

probplot / height=3 normal(mu=EST sigma=EST l=33);

run;

probplot: gives a probability plot for variable lbp

class sex: plot for both values of sex

height=3: size of the text

normal(mu=EST sigma=EST l=33) shows the line of the best fitting normal distribution.

The line is dotted (l=33).
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PROC UNIVARIATE with PROBPLOT

37



Box plots

proc boxplot data=bp;

plot lbp*sex / height=3 boxstyle=schematic;

run;

use proc boxplot not proc univariate

lbp*sex: the distribution of lbp for each value of sex

height=3: size of the text

boxstyle=schematic: specifies the type of boxplot (there are many)
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PROC BOXPLOT
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How to save graphs

SAS can use the ’output delivery system’ (ODS) to direct output

from a SAS procedure to other places such as data sets or files

As we shall see, out put can also be saved into data set using the

’output out’ command

Importantly, graphs can be saved using ODS

ods rtf file=’p:\eksempel.rtf’;

proc gplot;

---;

run; quit;

ods rtf close;

this generates a file in ’rich text format’ (RTF), which can be read

by Word. A pdf-file can also be generated.
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Regression results into WORD

Using similar statements for PROC REG will allow you to copy

regression results into WORD, e.g.,

ods rtf file=’p:\resultater.rtf’ BODYTITLE STARTPAGE=NO STYLE=journal;

ODS NOPROCTITLE;

proc reg data=other.bp;

model bp=obese;

run;

quit;

ods rtf close;
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Graphical model control in regression analysis

Residuals: ε̂i = yi − ŷi = yi − (α̂ + β̂xi)

Residuals are plotted against:

• the explanatory variable xi

– to check linearity

• the fitted values ŷi

– to check variance homogeneity

Figures should give an impression of pure scatter.

Whether residuals follow a normal distribution can be explored

using a histogram or a probability plot.
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Residual-plots and linearity
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Various types of residuals

• Ordinary residuals = model deviations: ε̂i = yi − ŷi

in SAS denoted r

• Normalized residuals, also denoted standardized residuals

or Student residuals

in SAS denoted student
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In the procedure REG we can calculate and save all these

quantities for later use:

proc reg data=bp;

model lbp=lobese;

output out=res p=yhat r=resid student=student;

run;

Here, we get a new data set res (work.res) containing 3 new

variables (yhat, resid, student), which we may then use, e.g. to

make a residual plot:

proc gplot data=res;

plot student*yhat;

run;
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Exercise: Regression and graphics II

Consider again the regression analysis of log(SIGF1) vs. age for

prepubertal children (Tanner stage 1 and age > 5).

1. Modify your code from exercise I to calculate residuals and

expected values based on the regression model (use an

OUTPUT statement).

2. Make residual plots as well as scatter plots of data with

estimated regression lines. Use different symbols for the two

genders.

3. Create RTF-files for your regression output and graphs.

47


	4. Regression and graphics

